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Introduction

We believe that the computer revolution has left most of you behind. Steve Jobs had similar
thoughts when he founded Apple Computer and set out to build “computers for the rest of
us.” The idea was to enable people who were not computer experts—like artists, educators,
and children—to take advantage of the power of computing. The graphical user interface
(GUI) popularized by Apple was wildly successful, widely copied, and is now the standard
interface of almost all personal computers. Thanks to this interface, people from all walks
of life use computers.

Now we need to make “computers for the rest of you.” We need computers that respond
to the rest of your body and the rest of your world. GUI technology allows you to drag
and drop, but it won’t notice if you twist and shout. It’s made it easy to open a folder and
start a program, but we’d like a computer to be able to open a door or start a car. Personal
computers have evolved in an office environment in which you sit on your butt, moving
only your fingers, entering and receiving information censored by your conscious mind.
That is not your whole life, and probably not even the best part. We need to think about
computers that sense more of your body, serve you in more places, and convey physical
expression in addition to information.

In more than a decade of teaching physical computing at New York University’s Tisch
School of the Arts, we have found people from very diverse backgrounds looking to bridge
this gap between the physical and the virtual. Perhaps you are a sculptor who would like
different sounds or videos to play depending on where a person touches your sculpture,
or a dancer who wants a knee bend to cause bells to ring. Maybe you are a sociologist who
needs to automatically log how many people pass a street corner. Maybe you’re a teacher
who wants to make tools for children to understand the world by doing rather than just
reading. Or maybe you just want your window blinds to be lowered automatically in the
afternoon if it’s hot outside. Regardless of your background or technical experience, this
book is designed to help you make a more interesting connection between the physical
world and the computer world.

How We See the Computer

When asked to draw a computer, most people will draw the same elements: screen,
keyboard, and mouse. When we think “computer,” this is the image that comes to mind.
In order to fully explore the possibilities of computing, you have to get away from that
stereotype of computers. You have to think about computing rather than computers.
Computers should take whatever physical form suits our needs for computing. So what is
computing good for?
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XViil  Introduction

One common reply is that computing is like human thinking. The area of Artificial
Intelligence (AI), using computers to imitate, and maybe someday replace, human beings,
has been an important part of computer science since its beginning. Robotics is the
physical equivalent to Al The technology you will learn in this book is very similar

to what you'd learn in a book on robotics, but our typical applications are different. In
robotics, people generally build robots—things that try to imitate the autonomy of human
beings. We have nothing against robots, but we find the best robots much less interesting
than even the dullest people (for now). Our approach comes out of a different area of
computing called Intelligence Amplification (IA). This approach looks to people to supply
the spark of interest and computers to capture and convey a person’s expression. Rather
than trying to imitate the autonomy of human beings, we want to support it. IA treats the
computer as a medium of communication between people.

So what does computing offer as a medium? It can store sounds and images, but so

could previous media like magnetic tape and movie film. With film and magnetic tape,
information and images must be called up sequentially, according to their physical
location on the tape or film as it rolls along. Ideas can only be directly linked with the
previous and next idea in the sequence. Because of this, these are called linear media.
Computers offer a break from linearity. With random access media, non-sequential parts
of a computer’s memory can be called up as if they were next to each other. This allows
any idea recorded in memory to appear as if it’s next to any other idea. When you combine
random access with networked communication, you can display information and images
stored on different continents as if they were stored next to each other. Reordering and
making multiple versions are all made much easier, as anyone who has used a computer’s
copy and paste functions understands. Computers reduce the barriers of time and space
when playing with and rearranging ideas. As a result, they better depict the changing and
manifold relationships between ideas in human thought, and they can be more egalitarian
in giving voice to multiple versions of those relationships.

Even if you’re not out to save the world by annihilating time and space, computational
media offer some concrete advantages. Without a computer, you can connect a button being
pressed to a light turning on. With a computer, you can make the relationship between

the button and the light more complex. For example, you can make the light’s turning on
dependent on the number of times the button was pressed, for how long it was pressed,

or whether it was pressed in conjunction with other buttons in other rooms or on other
continents. You can change the relationships on the fly; for example, you can make the
light come on after two button presses during the day, and after only one button press at
night. To get the computer to make these relationships between events it senses and events
it causes, you write computer programs. The intelligence amplification approach counts on
human beings to make the most interesting relationships, so your programs for physical
computing are often relatively simple.

How the Computer Sees Us

If you want to put the computer in a role that supports people (rather than the other way
around), you need to look at the person and her environment to determine what needs to
be supported. So what does a person look like to a computer? Ask this question, and you're
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Introduction Xix

likely to get a bunch of blank stares. Why should we care? A computer’s image of human
beings is reflected by its input and output devices. In the case of most desktop computers,
this means a mouse, a keyboard, a monitor, and speakers. To such a computer, we might
look like a hand with one finger, one eye, and two ears (see Figure 1.1). To change how the
computer reacts to us, we have to change how it sees us.

Figure 1.1
How the computer
sees us.

The human being as seen through the computer’s input devices is a sad creature. Kurt
Vonnegut’s Tralfamadorians from The Sirens of Titan look much like this, and their perspective
is as alien to ours as this poor creature’s. It can’t walk, dance, or jump; it can’t sing or scream. It
can’t make grand sweeping gestures. And it has only one direction in which to look.

Before we invent new forms for the computer, we need to decide why it needs to take new
forms. We need to take a better look at ourselves to see our full range of expression. This
includes everything from the spontaneous expression on your face to the more deliberate
expression of a trained artist. Just in the act of standing up, a person effortlessly reveals
important details through hundreds of subtle and unconscious adjustments every second.
Even though these expressions come and go very quickly, humans have amazing abilities
for reading into this body language the interior state of another person. To make the
computer a medium for expression, you need to describe the conversation you want to have
with (or better yet, through) the computer. For example, in a Web chat room, should the
context of the expression—that is, the posture of the user—accompany the text of the chat?
You also need to examine your environment. Does life continue when you leave the swivel
chair? Should the computer be able to interpret this action? Do people prefer to vote with
their feet? How do you record their vote? Once you've taken these steps, you'll be able to
realize more of the physical potential of computers, and also that of human beings.

The Concepts

There are a few key concepts that come up repeatedly throughout this book, so it’s
worthwhile to introduce them briefly here. Physical computing is about creating a
conversation between the physical world and the virtual world of the computer. The
process of transduction, or the conversion of one form of energy into another, is what
enables this flow. Your job is to find, and learn to use, transducers to convert between
the physical energy appropriate for your project and the electrical energy used by the
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computer. To cut this task down to size, it helps first to identify the direction of the energy
flows as input or output, and then treat each flow as a separate problem. You will learn
that the signals in these energy flows can be viewed as digital or analog. Identifying how
you want to view the flow will help both to clarify the interaction you are creating and to
further narrow your search for transducers. Being able to identify how events in the flow
occur over time, whether they happen serially or in parallel, will help determine how best
to plan the interaction.

Interaction: Input, Output, and Processing

When people talk about computers, they often say that computers are useful because they
make things interactive. “Interactive” is a fuzzy term, and often misused for all kinds of
ridiculous purposes. Author and game programmer Chris Crawford has a great definition
for it: interaction is “an iterative process of listening, thinking, and speaking between
two or more actors.” Most physical computing projects (and most computer applications
in general) can be broken down into these same three stages: listening, thinking, and
speaking—or, in computer terms: input, processing, and output. Breaking down your
project along these lines will enable you to better focus on your particular challenges and
possibly to skip entire sections of this book. In Chapter 8, “Physical Interaction Design, or
Techniques for Polite Conversation,” we will return to this three-part cycle of events to
create interactions that balance them in a satisfying way, like a good conversation.

Input

For many people, input is all they want to learn from physical computing. They are already
happy with their ability to express themselves on a computer, either through the screen or
through the speakers, but feel constrained by the input of a mouse and keyboard. Input is
usually easier than output because it takes less energy to sense activity than to move things.

Output

The most provocative physical computing projects are ones that don’t just sense the world;
they also change it. In general, physical output can be more difficult than input because

it often requires electrical (as opposed to electronic) and often mechanical skills. There
are a couple of devices for light, sound, and movement that are very easy to use, which we
will cover in Part I of this book. You can also get fairly far rather easily by connecting your
physical input to a desktop computer, which has great capabilities for sound and video
output. In Part II, we will meet the challenge of output in depth, using motors and other
devices to move things in the physical world.

Processing

Input and output are the physical parts of physical computing. The third part requires a
computer to read the input, make decisions based on the changes it reads, and activate
outputs or send messages to other computers. This is where programming comes in.

Transduction

One of the main principles behind physical computing is transduction, or the conversion
of one form of energy into another. A microphone is a classic transducer because it changes
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sound pressure waves in the air to a changing electrical voltage. Speakers convert the same
energy in the opposite direction. Transducers are the eyes, ears, hands, legs, and mouth of
any physical computing system.

Much of the challenge of physical computing is converting various forms of energy, such

as light, heat, or pressure, into the electronic energy that a computer can understand.
Sometimes it’s easy to find the right transducer for the job; at other times, you will contrive
the interaction to fit a transducer that you know how to use.

Input transducers (sensors), such as switches and variable resistors, convert heat, light,
motion, and sound into electrical energy. Output transducers (actuators), such as motors and
buzzers, convert electrical energy into the various forms of energy that the body can sense.

Digital and Analog

When describing an activity, begin by breaking it down in terms of how many possible
outcomes there are. Sometimes we view events in the world along a continuous range of
possible states. At other times, we only care about the difference between two possible states.
When two states will suffice, we’ll call it digital. When a continuous range of multiple states
is considered, we’ll call it analog. For example, as you get dressed in the morning you might
prefer to know the actual outdoor temperature (analog) rather than just hearing that it’s hot
or cold (digital).! On the other hand, when deciding to bring your umbrella, you only want
to know whether it is raining or not (digital); you don’t care how hard it’s raining (analog).

In general, digital input and output (I/O) are easier than analog I/O because computers use a
two-state, or binary system, but analog I/0 can be more fun and interesting.

The language you use to describe the project will tip you off to whether your I/0
requirements are analog or digital. For example, if you can use the words “whether or not,”
or the word “either,” in describing the input or output, then you’re probably talking about

a digital input or output. If you can use words like “how much” for input or superlative
adjectives like “stronger,” “faster,” “brighter,” then you’re probably talking about an analog
input or output. For example, a digital output would work to either turn a light on or off; an
analog output would be required to determine whether the light is brighter or dimmer.

Parallel and Serial

The terms digital and analog make it possible for us to be clear about what we’re listening

to (our input) or what we’re saying (our output). We also need to be clear about how we’re
speaking or listening. Sometimes we present ideas simply, one after another, in discrete
chunks. For example, a simple melody played on a solo instrument lets us focus on the
structure of the melody, and how its changes affect our emotions. At other times, we present
many ideas all at once so that they complement each other. For example, a symphony’s power
comes from the experience of hearing many instruments playing different harmonies all at
once; each individual instrument’s melody line is important, but the combined effect of all of
them presented at once is what we take away from the experience.

To describe the order in which events happen, we can talk about them happening either
one after another in time or all at once, simultaneously. For our purposes, we’ll refer

1 The truth is that analog and digital may not be the most accurate terms. Terms like multi-state versus two-state or
continuous versus binary might be better. But digital and analog are commonly used terms among the manufacturers of
the tools we will be using.
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to events that happen one at a time as serial events, and when several events happen
simultaneously, we’ll refer to them as parallel events.

While we’re using these terms in a broad sense, to talk about how events are organized
in time, we’ll also use them to refer to more technical aspects of the work as well. You'll
see how electrical energy can flow through components serially (one after another) or
in parallel (through several components at the same time), and we’ll talk about how
computers can exchange bits of information serially or in parallel as well.

The Practice

Physical computing is best understood by doing it rather than talking about it, so in this
book we focus primarily on how to do it. Following are a few general guidelines that will
help you keep your wits about you in the midst of all the technical information that follows
later in this book. If you find yourself getting lost in the details, come back to this section
and use it as a guide to regain an overview of your whole project.

Getting Started: Describing What Happens

The first step in a physical computing project is to describe what you want to happen. If
you can'’t first describe what happens in plain language, it will be difficult to write the
programs and build the circuits to make it happen. Describe the whole environment of the
project from the point of view of the person experiencing what you’re making. Describe
what she sees, hears, and feels and what she can do to change the environment. Describe
the experience as it unfolds, what changes as the person takes various actions, and how
her attention and actions are focused by the changes. Describe why this is engaging to
the person and how the sequence of events should work to keep her engaged. You'll revise
this description several times as you realize the project, so don’t worry if some details
are missing. On the other hand, don’t let the process of implementation distract you from
filling in the missing details as you go.

Focus your description on what happens, not how it happens. Avoid describing the specific
technologies involved or the tools used to make things happen. These details will prejudice
your thinking and possibly cripple your concept. Frequently, we’ve had students skip to the
technology, coming to ask how to implement some esoteric and difficult-to-use sensor. Our
first question is always, “What are you using this to do?” Quite often, once they describe what
they want to happen without describing the technology, a simpler solution can be found.

For example, say you want to announce guests at a party in a big way. When a person
walks into the room, a theatrical curtain opens, a bright spotlight hits the person, and loud
applause is heard. This description tells you nothing about the technologies that make

it work, but it gives you enough description to start to plan how to make it a reality. You
know you need a curtain, a spotlight, and applause, and you know you need to be able to
sense when a person enters the room.

After you've described the project and iterated your concept a few times in plain language,
without thinking about the technology, you should break the project down into the stages
of input, output, and processing. For example, the input in the example above would be the
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person walking into the room, the output would be the spotlight and the applause, and the
processing would be turning on the light and playing the applause if a person walks in.

Next, identify your input and output as digital or analog and begin your search for the
perfect transducers. Again, in the example above, if you wanted the volume of the applause
to depend on how far the person walked into the room, you would need an analog input
and output. If you wanted the applause to either be on or off, depending on whether or not
the person was in the room, you would need digital input and output. It will help you to
focus in on the most relevant parts of this book if you can break your project description
into parts that fit into the categories shown in Figure 1.2. Use this or a similar worksheet to
fill in the input/output needs of your project.

Figure 1.2

Categorize your DiGITAL ANALOG PROCESSING DiGITAL ANALOG
physical computing INPUT INPUT Output Output
challenges.

In addition, you should describe the sequence of events. Does the light happen before the
applause? Or do they happen at the same time? In the former case, they’d be serial events,
and in the latter, they’d be parallel events.

Refer to the chart in Figure 1.3 to help figure out how complex your project is, and what
needs to be done.

Figure 1.3 Serial

Mapping your project: One event at a time

analog and digital, Easy A bit more difficult
serial and parallel.

Digital «¢—————Processing —— Analog

Time consuming,

but not too hard The most challenging

Parallel
Many events at once

Level of Abstraction (and Distraction)

With any technical practice, you inevitably have to make strategic decisions about the level
of abstraction between you and your tools. Higher-level tools place you at a higher level of
abstraction from the details of the technology.? As a result, they are easier to use but don’t

2 This way of thinking of high levels and low levels may seem counterintuitive if you're used to thinking of “higher level”
meaning more advanced technologically. Instead, think of “lower level” meaning a lower level of padding between you
and the metal of the computer. We think a little padding goes a long way.
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always allow you to do everything you would like. Our approach starts at the highest level that
still gets the job done and works down when necessary. With high-level tools, you can quickly
try a new idea, and if it doesn’t work, you can move on before you get too invested technically
and emotionally. In technology, tools change rapidly enough that a high-level approach works
in your favor: tomorrow’s high-level tool will have the power of today’s low-level tool.

In practice, though, it’s never that clear. There are temptations in lower-level tools to lead
you astray. For example, if you are a food lover, you might be attracted to cooking from
scratch, regardless of whether it tastes better, because you enjoy the process. Be aware that
you may be indulging a technical machismo that will be distracting, time-consuming,

and will probably yield a less impressive result. Just because you made your creme bralée
from scratch doesn’t mean your guests are going to like it (especially if you've never cooked
it before). On the other hand, when you know something about cooking, it’s difficult to
make a signature dish using only pre-prepared foods. If you are attempting something very
specific and unusual, there will come a time when it’s easier to do it yourself than to find,

cobble together, and then work around a bunch of mix-and-match prepared solutions. A
combination of working at the highest level, knowing what’s available at lower levels, and
knowing when to switch up or down, will yield the best results (see Table 1.1).

Table 1.1
Levels of Abstraction

SOFTWARE

Foop

MICROCONTROLLERS

Higher Level (“Hello World!”)

MAX
LINGO/ACTIONSCRIPT
PROCESSING

JAVA

C

ASSEMBLY

Lower Level (“1001001 0110110”)

Higher Level
(“Hello, may I take your order?”)

Ordering out
TV dinners
Hamburger Helper

Using the deli counter at
the supermarket.

Using produce and the butcher
at the supermarket.

Growing your own foods,
harvesting them, and preparing
them from scratch.

Lower Level (“Henry, go kill me
a chicken, and we’ll have some
pot pie tonight.”)

Higher Level (“Hello World!”)

Teleo
BASIC STAMP 2
BX-24

Basic Atom Pro24

PIC

SX

Lower Level (“1001001 0110110”)

The Tools

We will give examples at different levels, but our inclination will be toward tools in the
middle to high level. To make the connection between the physical world and the digital,
you’ll learn to assemble circuits, connect them to computers, write software for the
computers, and enable computers to communicate with each other (see Figure 1.4).
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Figure 1.4 .

The parts of a physical \ Microcontroller programming

computing system. ¢ /\O
0O
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o
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Serial

Circuit Communication

Circuits

You will have to build a little circuitry as the glue between the transducers you use to
sense and control the world and the computers you use to interpret what’s going on. For the
majority of common transducers, you will copy one of four or five basic circuits we’ll lay
out in the early chapters. Building these circuits is fairly simple. It amounts to connecting
a few wires and an electronic component or two.

While it will help to have some feeling for how electricity behaves, we’re aiming to make you
do the least amount of work to get information from the physical world through sensors into
the computer. We’ll cover the basics needed to understand the circuits we’re using, and point
to other sources for more detail. In a sense, the computer is the mother of all general circuits,
and you can finesse the connection between input and output further in software. You can
get far in physical computing with the most basic understanding of electricity.

Circuits are usually described in a diagram called a schematic that shows the electrical
components and how they are connected to each other. You will need to know enough
about schematics to be able to read them, but to get started you need not be able to draw
schematics or design circuits.

As you get more adventurous with your transducers, the translations of energy will get a little
more involved. Then you will need to learn more about the behavior of electricity and how to
build circuits, particularly when dealing with more powerful output devices like motors.

Computers

The word “computing” might seem at odds with the word “physical.” One of the main
strengths of computer technology is transcending the time and space of the physical
world. Yet physical computing is all about recognizing that people are still 99 percent
monkeys who really enjoy the pleasures and constraints of the physical world. In physical
computing, we want it both ways: we want the liberation that computers allow situated

in the sensual world that humans enjoy. To do this, we’ll use a variety of computers, but
always do our best to put them in the background so that we can focus on the experience
between humans in the foreground.

Microcontrollers

The main computer we’ll use in physical computing is the microcontroller. This is a
very small, very simple computer that’s good at three things: receiving information from
sensors, controlling basic motors and other devices that create physical change, and
sending information to computers and other devices. They act as gateways between the
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physical world and the computing world. Microcontrollers are often at the heart of complex
electronic devices, so understanding how they work will give you new insight into
electronic devices that you already own

Figure 1.5

The four
microcontrollers
discussed in this
book. These simple
computers are at
the heart of many
physical computing
applications.

Microcontrollers are small and cheap. This allows you to explore location-specific projects
that embed computers in the most unlikely places, like shrubbery and sneakers, or to develop
projects where the actions of many simple devices add up to a more interesting whole.

Microcontrollers are found in everything from washing machines to light switches. You
benefit from this ubiquity, as it has brought down the cost and improved the ease of use of
microcontrollers.

Multimedia Computers

To some degree multimedia computers (desktop and laptop computers) are what we are
working against in physical computing. These computers presume that the person using
them will be relatively inactive, except for her fingers and hands, and that her eyes and
ears will be focused in one direction. These computers may be multimedia-capable on
the output side, but they are not so on the input side. One of our main objectives is to get
people to picture a computer as something other than a couple of big beige plastic boxes
on a desk and to picture their interaction with computers as something other than typing
and clicking. The problem with our zeal to stretch your concept of computers beyond
multimedia computers is that they are so useful, particularly for tasks such as generating
sounds and graphics and sensing physical activity through cameras and microphones.
Many projects combine the interesting input and output possibilities of microcontrollers
with the multimedia output capability of multimedia computers. On the other hand, if
your project does not involve any multimedia, such as playing sounds or videos, you may
not need the complication and expense of a multimedia computer at all. Connecting back
to multimedia computers is one of the things that separates this book from books about
robotics. Robotics books tend to insist on having the microcontroller stand alone. We'’re
not so swift to dismiss the multimedia computer’s output capabilities when it’s useful for
communicating with people or between people. Multimedia computers are also useful
for prototyping part of a project that ideally will be small and portable, but is not easy to
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miniaturize quickly. For the purposes of a demonstration of a futuristic project you might
prefer to just say “Pay no attention to that huge computer behind the curtain.”

Intermediate Computers

There is a wide range of computers between multimedia computers and microcontrollers.
For example, notebook computers, tablet computers, single-board computers, palmtop
computers, and mobile phones are all types of computers that might fit perfectly into your
particular physical setup. Most of these intermediate platforms use operating systems and
development environments that resemble the multimedia computer’s, so our material on
making a connection between the microcontroller and the multimedia computers will give
you a leg up with these platforms.

Programming

This will send many readers running for the doors because they’ve tried and failed in

the past to learn programming. In fact, physical computing is an excellent environment

to learn computer programming. Abstract programming concepts like bits and bytes are
embodied by tangible things like switches. In addition, the programs for microcontrollers
tend to be very small and simple. There are only a few things you might want to do on a
microcontroller: read sensors, turn things on or off, and send messages to other computers.
Often it only takes a few lines of code, and much of that code can be borrowed from others
and modified to suit your purposes.

You have a choice of many languages and microcontrollers, but we will be giving our
examples for programming microcontrollers in one of the friendliest languages, BASIC.
The process of programming microcontrollers involves typing out the programs on

a multimedia computer and downloading them into the microcontroller. Chapter 5,
“Programming,” is geared toward someone who has little programming experience. If you
are an experienced programmer, you can probably just skim the examples to get the syntax.

Programming multimedia computers, on the other hand, is a big subject. The topic of
programming is too broad to be covered in one book, so our focus will be on how to get
computers to communicate basic information with each other. If you already have some
experience programming in Director/Lingo, Max/MSP, Processing, or Java, you are in
perfect shape for this book because we will show you how to communicate between the
microcontroller and the multimedia computer in these languages. Beyond communicating
with the microcontroller, programming multimedia computers for the multimedia

needs of your project is too idiosyncratic for us to cover properly here. If you are new to
programming in general, you will need to pick a multimedia programming environment
and learn it. We recommend those mentioned above, and we will provide a few examples
using them to get information from a microcontroller into a multimedia computer.

Communicating between Computers

We rarely talk about computers anymore without talking about a network of computers.
Even if you are not sending messages across the Internet, you might need to communicate
between two different types of local computers. For example, your microcontroller is
good at listening to switches, but not so good at more advanced multimedia tasks. It might
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send messages to your multimedia computer, which is better at playing sounds or videos.
There are many different ways to communicate between computers. We’ll be introducing a
method called serial communication that offers the most flexibility for the least amount of
work. We will also talk about more specialized versions of this method, such as MIDI and
Internet protocols.

Your Concept: Don’t Lose It

This book is about working backward from your project idea to the specific techniques
you need to know to realize it. The journey from the concept of the project to realization is
seldom one-way. The technical skills you develop along the way will inform and change
the concept. After you develop some fluency with the tools, ideas often come concurrently
with the making of the project, not necessarily before. But if this is your first experience
with these technologies, it’s easy to lose your way.

There are two big traps along the journey into physical computing. The first and more
pleasant of the two traps is technological seduction. It’s possible to get so pleased with your
new technical powers that you dig into unnecessary technical detail or start growing weird
new limbs for your project. In practice it’s hard to tell the difference between when technical
obsession will result in a very subtle and unexpected project and when it will just lead to
lonely mutterings to yourself. It’s a good idea to check your work with a potential audience
as you go. If your audience doesn’t notice any improvement in a project as a result of a
particular technical change, you might want to re-evaluate how necessary the change is.

The second trap is spinning your wheels for so long, trying to get something to work, that
you give up on the entire project in frustration over one part of it. Here again, sometimes
sidestepping a technical problem will require ingenuity that may totally jumpstart and
liberate your project; other times it will leave a glaring compromise in the final product.

There are four things that can keep you focused as you implement your ideas. First, keep a
journal of the journey. Write down your ideas as you go, as well as the questions you have,

the problems you encounter, and the solutions you come up with. This helps you to remember
where you were going before you got discouraged by a technical or conceptual problem. In fact,
your best entry may be the one you make right at this moment, recording what got you going
down this road before you lost your technical innocence (assuming you had any to begin with).
A healthy process is one in which you take frequent breaks from the details of realization to
look at the overall idea, so don’t wait until you’re discouraged to revisit your journal. Better yet,
make it a public Web log so other people can benefit from your progress.

Second, work fast and at a high level. Whenever possible use prefabricated technical solutions
to at least test things. Don’t spend your time perfecting endless details until you have proven
the overall concept. The longer you spend implementing something, the more invested you will
become in it and the less objective you become about its actual value to the project.

Third, don’t become paralyzed by planning. Unless you’re psychic, it’s better to just try
something and see how it works out. If the first solution doesn’t work, try another. Each
variation will give you new ideas on what’s good about your project and what’s not.
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Furthermore, being less invested in any one solution at the beginning will make it easier to
find a workaround or a different solution when you hit an obstacle later in the process.

Fourth, collaborate with other people. Explaining yourself, particularly to people who do
not think like you, will keep you honest. When you have checked everything a hundred
times and still can’t imagine what could be causing the problem, a fresh set of eyes is the

best solution.

Finally, take frequent showers and work on many parts of the projects at once. A lot of
solutions will appear in your peripheral vision, so taking frequent breaks or switching

tasks will help.
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N THIS SECTION, we’ll explain the major technical concepts underlying physical
Icomputing, define the terms used to describe them, and give working examples to
illustrate the concepts. We tried to keep it lean, including only the things you need
to know to pull off some basic physical computing projects and leaving out more
advanced things about electronics that you don’t need to know right now. If you read
the chapters in order, you will get a general background to launch many types of

physical computing projects.

On the other hand, if you're really impatient to get going on a project, you might skip
directly to Chapter 6 to find which types of transducers, circuits, and programs you will
need for your project. This will probably give you more questions than answers, but

then you can skim through the rest of the chapters to fill in the gaps.
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Electricity

Transduction: Electrical Basics

Transduction, the conversion of one form of energy into another, is an important part of
physical computing. Looking at it from a high level, you're converting the intentions of the
participant into action. At a lower level, you're converting the physical energy he or she
exerts into electrical energy so that a computer can sense it. In the other direction, you
are converting the electrical energy of the computer’s output into movement, light, heat, or
some other form of energy. At the center of all this transduction is electrical energy, so it’s
necessary to understand how electricity works in order to make things happen.

All electrical and electronic devices exploit the fact that electrons have a tendency to go
from a point of greater electrical energy to a point of lesser electrical energy. You provide
a positive connection (greater energy, or power), a negative connection (lower energy, or
ground), and a conductor through which the electrons flow. When you’ve done that, the
electrons will travel from power to ground. Along the way, you insert various electrical
devices to divert the electrons to do your bidding.

Electrical energy always follows the path of least resistance to ground. The better the
conductor, the easier it is for the electrons to flow. The point of lowest electrical energy is
the earth itself, which is where we get the term “ground.” If you build up enough electrical
energy, electrons will flow through any conductor, even air. Lightning is just electrical
energy that’s built up in the clouds flowing through air to the ground.

A circuit is a closed loop containing a source of electrical energy (a battery) and a load (a
light bulb). Figure 1.1 shows a simple circuit. Electrical energy flows from the positive
terminal of the battery through the wires to the light bulb, and from the light bulb back to
the negative terminal of the battery. The light bulb resists the flow of that energy, converting
it into heat and light. In a well-designed circuit, all the electrical energy gets converted into
some other form of energy by devices like light bulbs, heaters, and so on. In the example in
Figure 1.1, the battery converts chemical energy from chemicals mixing inside it to electrical
energy, and the light bulb converts electrical energy into light and heat energy.
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Figure 1.1
A basic electrical
circuit.

Switch

Battery

We’re interested in using electrical energy to convert human action into other forms of
energy, though, so we’ll introduce that into the circuit by adding a switch. A switch is a
break in the circuit that stops the electrons from flowing. By closing the switch, you close
the break in the circuit and allow the electrons to flow again.

Every component you put into your circuit has certain electrical characteristics. The
battery can provide a certain amount of electrical energy, and the light bulb can resist a
certain amount of electrical energy. If you don’t provide enough energy, the wire inside the
light bulb won’t heat up and provide light. If you provide too much electrical energy, the
wire inside the light bulb will melt, breaking the circuit.!

In order to prevent this, you need to know how much energy the light bulb needs to light
up, how much energy it can take before it breaks, and how much the battery can provide.

There are three basic electrical characteristics that come into play in every circuit. The
relative level of electrical energy between any two points in the circuit (for example,
between power and ground) is called the voltage. Voltage is measured in volts. The
amount of electrical energy passing through any point in the circuit is the current.
Current is measured in amperes, or amps for short. The amount that any component

in the circuit resists the flow of current is called the resistance of the component.
Resistance is measured in ohms. Voltage, current, and resistance are all related, and they
all affect each other in a circuit (see sidebar).

Electrical devices resist the flow of current, converting it into other forms of energy in the
process. A circuit without enough resistance in its load is the dreaded short circuit and
should be avoided at all costs. As previously mentioned, a circuit is a closed loop, so all
the energy that comes in from the battery has to get used up somehow by the resistance

of your load. If your circuit does not use enough energy, it will just go right back into the
battery, heating it up, and eventually blowing it up. Any time you find a component in your
circuit heating up, you know it’s getting electrical energy. Most electrical components can
handle a certain amount of abuse, taking a little more voltage or current than they’re rated
for. However, if a component feels drastically hotter than usual or it starts to smell like it is
burning, it’s getting too much electrical energy and you have a problem.

1 Initially, you will be working with small DC voltages, so you don’t have to worry too much about things heating up.
But even when you use AC voltage, there will be fuses to protect against burning down the house.
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The combination of current and voltage

is called electrical power, or wattage.

It’s measured in watts. The relationship

is straightforward: watts = volts x amps
(likewise, amps = watts/volts or volts =
watts/amps). For example, a 120-watt light
bulb would need 1 amp at 120 volts.?

The amount of wattage you supply to a
circuit determines how much work it can
do. The more work you need to do, the more
power you need. So turning a motor to lift
weight, for example, would take more power
than turning on a small light like an LED.

Although you may never need to use Ohm’s
Law, you will probably at least need to
match a power supply to your load. When
you buy an electrical device or component,
you should look in the packaging or
documentation to see how much voltage it
can take and how much current it needs.
Some documentation may only specify
volts and watts, in which case you would
have to use the formula above to learn how
many amps are required (amps = watts/
volts). You can supply more than enough
current (amps), and a load will use what it
needs. On the other hand, you should be
careful to match the voltage as closely as
possible to the device’s rating.

Electricity versus
Electronics

You've already used your first sensor to
sense human activity: the switch in our
circuit is the most basic sensor there is. At
present, it can only turn the light bulb on or
off. The pattern of turning the switch on and
off can convey some meaning, if you observe
it over time. In this case, you're using the

change in electrical energy to pass a message

Electricity - Chapter 1

How VOITAGE, CURRENT,
AND RESISTANCE ARE RELATED

One way to ensure that you balance the
resistance of your load with the energy in your
supply and avoid the dreaded short circuit is

to restrict yourself to the circuits that we show
you. If you will be making your own circuits or
if you are just curious, there’s an equation that
relates these three electrical characteristics:
Voltage = Current x Resistance (likewise, Current
= Voltage/Resistance and Resistance = Voltage/
Current). This is known as Ohm’s Law. But it’s
easier to understand by using an analogy. The
flow of water through a hose is like the flow of
electricity through a circuit. Turning the faucet
increases the amount of water coming through

the hose, or increases the current (amps).

The diameter of the hose offers resistance to the
current, determining how much water can flow.
The speed of the water is equivalent to voltage.
When you put your thumb over the end of the
hose, you reduce the diameter of the pathway

of the water. In other words, the resistance goes
up. The current (that is, how much water is
flowing) doesn’t change, however, so the speed of
the water, or voltage, has to go up so that all the
water can escape. If it doesn’t, the hose explodes,
just like a fuse melts in a short circuit. When we
change how the water travels through the hose,
the total amount of water used is still the same,
but the way it moves through the conductor

changes (that is, it comes out of the hose faster).

or a signal. For our purposes, this is the distinction between electricity and electronics.
Think of electronics as a subset of electrical circuits that is used to convey information.

2 An ordinary household circuit in the U.S. will supply 15 amps of current at 120 volts.
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Generally speaking, electronic circuits don’t need a lot of electrical power. They just need
enough power to register a message in a brain or in another computer by turning on small
things like an LED or a transistor (an electrical component that can act like an electrically
controlled switch; we’ll discuss them in more depth later in the book). On the other hand,
when you use electrical energy to do physical work, such as turning on motors, you need
much more electrical power. For this reason, you’ll find that the input components of your
projects will generally need less power than the output components. On the input side,
you're listening to the world; on the output side, you're attempting to change it.

There are two ways in which electrical power is usually supplied: direct current and
alternating current. A direct current (DC) source supplies current on one wire and ground
on another, and the voltage between them is constant with the supply wire always at

a higher voltage. An alternating current (AC) source alternates the voltage on the two
wires. It’s easier to supply electrical energy over very long wires using AC, which is why
commercial electrical power is AC. The power coming out of your electrical socket is
typically 120 volts AC in the United States and 220 volts AC in Europe and Asia. Electronic
components generally operate using DC, however, and at a much lower voltage, typically
around 5 volts. They generally need very little amperage as well (less than one amp for
most of the circuits you’ll build), so we use AC-to-DC converters and transformers to
change alternating current to direct current. The large, blocky power supplies that come
with most electronic devices are AC-to-DC converters/transformers that convert the 120/
220 volts AC to around 5 to 12 volts DC.

Batteries supply DC, usually in the range needed for electronic circuits. A 9-volt battery is
an ideal source of power for many physical computing projects. We don’t recommend using
batteries while you're debugging your systems, however, because having them run out is
just one more thing for you to worry about.

How Electricity Flows

There are two basic properties of electrical energy that will be useful to you in all of the
circuits you build. These will help you to understand why a circuit works. They’ll also
help you avoid the dreaded short circuit and help you to troubleshoot your circuit when it’s
not working.

Electricity always favors the path of least resistance to ground.

This means that anytime electricity has two possible paths to take, it’ll take the one that
offers less resistance. In other words, if you connect power and ground with a wire (which
offers very little resistance), electricity will follow that path instead of through the rest of
your circuit; thus it will create the dreaded short circuit.

All the electrical energy in a circuit must be used.

This means that the components in your circuit have to consume all of the energy that
you put into the circuit. Any extra energy will get converted to heat by your components.
If there’s too much energy, the components will overheat and stop working. This is a
slightly less dangerous version of the dreaded short circuit. It won’t kill you, but it will
kill your components.
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Electricity - Chapter 1

To illustrate these two ideas, take a look at the simple circuit back in Figure 1.1. There’s
only one path for the electricity to take: from the battery’s positive terminal through the
switch, then through the light bulb, then to ground. All of the electricity follows this path
because it’s the only path. In this circuit, the light bulb, which is the only component

that uses electrical energy, has to consume all of the electrical energy. In this circuit, the
battery, the switch, and light bulb are all in series with each other, meaning that they are
all on the same electrical path. When components in a circuit are in series, the current is

the same for each of them, but the voltage decreases as each component uses some of it up.

Now take a look at another circuit. In the circuit in Figure 1.2, we connect a second
light bulb. The second light bulb is smaller. It uses less electrical energy, and offers less
resistance than the big light bulb.

Figure 1.2
Two light bulbs in
parallel.

Since the smaller light bulb offers a path of less resistance, some of the current goes
through it and some goes through the big light bulb, so both bulbs are a bit dimmer than
they would be if they were alone in the circuit. These light bulbs are in parallel with
each other, meaning that they are on two different electrical paths in the circuit. When
components are in parallel, the current is split between them, depending on their relative
resistances. The more resistance a component has, the less current goes through it. The
voltage across them is the same, though.

Take a look at one more circuit. In this one, we’ve added a bare wire in parallel with the
two light bulbs, as shown in Figure 1.3. Since the bare wire has almost no resistance,
almost all of the current goes through it. This is the dreaded short circuit.

When you start to build circuits, you’ll see examples of components in series with each
other and in parallel, and you’ll see how all of the energy gets used up.

Initially, you’ll be following very limited recipes for your circuits. For these recipes,

you really only need to know the most basic ingredients and their characteristics. The
definitions we’ve laid out here will stand you in good stead to do that. In Chapter 3,
“Building Circuits,” and in the advanced section of this book, we will go into more detail
about electrical relationships. Now that you've got an idea how electricity works, it’s time
to go shopping.
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Figure 1.3

Two light bulbs in
parallel with the
dreaded short circuit.
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Shopping

Unless you've made electrical or mechanical devices before, you’ll need to do some
shopping for electronic parts and tools. We’ll end this chapter with a shopping list.
Sometimes we might recommend one part number (usually the least expensive) where
several others would work. For other items, we will present a couple of part numbers where
you only need one. In the rest of the chapter, we will describe why these items are useful
and what varieties are available to help you make your own purchasing decisions. We will
talk more about how to actually use these items in later chapters.

All the parts are easily bought from catalogs or from online sources. Among the online
vendors, we recommend Jameco Electronics and Digi-Key Corporation. Jameco is handy
because they have pictures of their parts on the Web site, but Digi-Key carries a wider range
of parts and materials. We’ll list many others throughout the book and in Appendix A.

If you can’t wait for a shipment, or if you just like to touch things before you buy them,
most of these things can be purchased at a local electronics store such as Radio Shack.
Radio Shack has been moving away from supporting the hobbyist market in recent years,
and their sales staff aren’t always very knowledgeable about the components they sell, so
it’s best to learn to navigate the electronics section on your own. Hopefully, you’ll start to
find your own local resources for physical computing, to the point where you slow down
when passing promising dumpsters and start asking the people you meet at Radio Shack
out for coffee.

Following is a description of parts you'll need to get started. At the end of the chapter you’ll
find the shopping list with part numbers.

Solderless Breadboard

The breadboard will be the foundation of all your circuits. These are also called
experimenter’s boards or prototyping boards. A breadboard is a tool for holding the
components of your circuit and connecting them together. It’s got holes that are a good size
for hookup wires and the pins of most components, so you can push wires and components
in and pull them out without much trouble. When you need to change something, you just
pull the wire out. This saves a lot of time that you’d otherwise have to spend using solder
to connect wires.
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You could buy a short 3" breadboard if you are sure that your needs are simple. We
recommend the more standard 6" models that will give you room to grow. Breadboards
typically have long lines of holes on the sides that are used to provide power and ground to
your circuit. Breadboards with two long lines on each side are a great convenience because
you can have both power and ground on both sides. These lines are sometimes referred to
as bus rows. Picture them as mass transit for the happy little electrons, and you’ve got the
idea. You will also see big breadboards with screw terminals for power and ground, but
these may not be worth the extra money.

Microcontrollers

Microcontrollers will be at the heart of most of your projects and at the center of the work in
this book. Microcontrollers are available at many different levels. We recommend that you
start with mid-level microcontroller modules, such as the Basic Stamp, BX-24, or Basic Atom
Pro24. The majority of examples in this book were created with these chips in mind. To give
you a broader picture of the possibilities, we will go through some of the trade-offs of moving
up or down to better meet your needs and experience (see Appendix A for more details).

Microcontroller Features (in Order of Priority)

There are several features to consider when picking which microcontroller you plan to use.
We’re recommending several microcontrollers, but you’ll have to make your own choices.
These notes will help you to decide, based on your own personality and capabilities.

Programming Environment

If your time and sanity are worth anything, then a simple and easy programming
environment should be your first priority. The inconveniences of low-level programming
languages and of too many steps in transferring the program to the chip may seem small
to an expert. But it only takes a single obscure detail at the start to stall your project for
several days. Even a few extra steps can wear you down as you iterate and debug your
program many times.

What programming language (or languages) is used to program the microcontroller? All

of the ones we recommend can be programmed in a variant of the BASIC programming
language. However, the BasicX BASIC (for the BX-24) is both more complex and at times
more powerful than the other BASICs used here. In addition, the PIC microcontroller

can also be programmed in C, a lower-level and more complex and powerful language.
Everything we are doing can be done in all the versions of BASIC used below. However, if
you're already comfortable in C, you could consider the PIC and C, or if you're comfortable
with Microsoft Visual Basic, you will find the BasicX BASIC very familiar.

Do you need extra hardware to program the microcontroller? The PIC is the only
microcontroller recommended here that needs a hardware programmer.

Can you change the program while the chip is in your circuit? This is possible for all of our
microcontrollers, but is a little more difficult with the PIC.
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NOTE

Currently, all the microcontrollers we’ll discuss are mainly programmed from

a PC running some variation of Windows. While Macintosh users can use a
microcontroller in connection with their machine, the options for programming

it from their machines are limited. You don’t need a very fancy machine for
programming, so many Macintosh users get used and outdated PCs from a thrift store
just for programming the microcontroller.

Analog Input

Does your microcontroller have analog-to-digital converters for reading analog voltages

in?” How many does it have? The Basic Stamp 2 is the only microcontroller we’re
recommending that has no analog inputs, but you can fake it as long as all your sensors are
variable resistors. The Basic Atom Pro24 has only four analog inputs. The BX-24 and the
PIC 18F452 have eight analog inputs each.

Digital Input and Output

How many digital input and output pins does your microcontroller have? All of the
microcontrollers we’re recommending have sixteen digital I/O pins, except for the PIC
18F452, which has 33.

Analog Output

Can your microcontroller provide dedicated pulse width modulation (which will be
explained in Chapter 6, “The Big Four: Schematics, Programs, and Transducers”), so that it
can provide continuous analog output without interrupting the rest of your program? The
PIC 18F452 is the only microcontroller we're recommending that can truly do this, though
the BX-24 and the Basic Atom Pro24 can come very close.

Speed of Execution

How many instructions per second can your microcontroller execute? Is the program
interpreted, as on the Basic Stamp 2, or compiled before running, as on all of the other
microcontrollers we’re recommending? For our purposes, it’s less important to know the
actual number of instructions per second than to know that the PIC is the fastest of the four
recommended, the Basic Atom Pro24 is second, the BX-24 is third, and the Basic Stamp 2

is the slowest. All of them will operate fast enough to do the tasks explained in this book,
faster than human perception.

Another speed factor to consider is the maximum baud rate the chip can use for serial
communication. If you need to communicate with a device that has a particular baud rate
(for example, MIDI devices communicate at 31,250 bits per second), then you need to make
sure your microprocessor can operate at that speed.

Price

How expensive is the microprocessor itself? How expensive is the development environment?
Of the microprocessors recommended, the PIC 18F452 is the cheapest (about one quarter the
price of the others), but its development environment is the most expensive (the others are

all free). This means that you need to use a number of PICs for a number of projects before
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you've paid off the cost of the development environment relative to the others. On the other
hand, once you've done a few dozen projects, you save money using PICs.

Amount of Memory

How much memory your microprocessor has affects how big your program can be. For the
four microcontrollers we’re using, this is seldom a significant factor, as they’re all in the
same general range in terms of memory.

Power

How much power does your microcontroller consume? Can it run on batteries? For how long?
Of the microcontrollers we’re recommending, the PIC is the most power-efficient, but the
difference is negligible when you add in external devices like motors and sound devices.

High-Level Microcontroller Modules

Examples: Making Things’ Teleo system, Infusion Systems’ I- Cubed, Electrovoce’s
MIDITools, Ezio

You can buy boxes that can do the most popular physical computing tasks, such as digital
and analog I/0 and serial communication, but hide most of the wiring and electrical
components from you. They have simple connectors for everything from power and serial
ports to switches, potentiometers, and motors. They are much more expensive than lower-
level solutions, but they will save you a lot of time if you know that your needs are clear
and simple. We don’t usually recommend beginning at this level, however. As long as
you're going through the trouble to learn any wiring at all, you should go the few extra
steps to learn about mid-level microcontroller modules. The level of complexity is not that
much greater, but the amount of flexibility gained and money saved can be significant.
Although our examples will be more detailed than you need for the high-level devices, the
major concepts we cover will still apply.

Mid-Level Microcontroller Modules
Examples: Parallax’s Basic Stamp 2, NetMedia’s BX-24, Basic Micro’s Basic Atom Pro 24.

The Basic Stamp, and later the Basic Stamp 2 (BS-2), made by Parallax, was one of the first
to fill the need for cheap mid-level microcontrollers. Other brands have since come along
with improved features and more speed or memory. Because the Basic Stamp 2 is so popular,
many of the later competitors have copied the BS-2’s physical pin layout in order to make
their products compatible. Circuits designed for the Basic Stamp 2 will generally work with
the competitors’ modules as well. We will refer to all of these as “stamp-like” modules.

These modules are like training wheels for the lower-level microcontroller contained
within them. The modules themselves are more expensive than lower-level processors
because they contain all the extra wiring necessary to turn on the microcontroller. Often
these modules run slower than the lower-level processors because the programming
languages for them sacrifice efficiency for ease of use. The software environments for
programming mid-level modules are simple and can usually be downloaded for free.
You can program and reprogram the chips in a friendly language like BASIC, and you get
feedback very quickly.
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The companies who make mid-level modules will sell you a development environment
that usually consists of the manual and the programming software on a CD. The nicely
printed manual is handy, but generally both the manual and the software can be
downloaded for free. Other accessories such as carrier boards or demo boards make these
seem very much like the higher-level boxes. They’re nice if you have the money and are
in a hurry, but they mostly just save you from doing a little wiring that you're better off
learning to do for yourself. With the carrier board and the manual, an average mid-level
module will cost around $100. If you buy the module alone, it’s usually $50 or less. We
recommend the latter option.

Low-Level Solutions
Examples: PIC chips, SX chips, Atmel (AVR) chips

At the heart of the high-level and mid-level modules are the microprocessors themselves.
It is possible to work with them directly and assemble all of the circuitry on the module
yourself. The initial learning curve to do this is the steepest of all three approaches, and
the initial expense is the highest. The tradeoff is that once you've mastered the skills and
bought the tools, the processors themselves are much cheaper (as low as $1 per chip) than
the high- and mid-level modules. This book will cover the basics at this level and give
some examples for their use, but we really don’t recommend this approach if you're just
getting started. Compared to working with mid-level chips, working with the processors
themselves requires you to build more circuitry just to turn them on. In addition, you’ll
have to understand the electronics a bit more in depth to keep them running smoothly.
You’ll also need an additional piece of hardware between your desktop computer and the
processor in order to program them.

There are compilers that will convert programs written in friendly languages like BASIC
(or C, which is more friendly to experienced programmers) into instructions the chip can
understand, but you won’t find all the tools in one piece of software. You’ll have to cobble
together a few different software packages in order to write your programs and download
them to the processor. While there are free programming tools available, the more useful
ones are not free. The one we recommend is about $250; they range in price from $100 to
more than $1000.

Getting the program from the multimedia computer into the low-level processors involves
an added piece of hardware called a chip programmer. These range in price from $7

to $300; you can get a good one for around $60. Most chip programmers require you to
remove the processor from your circuit in order to program it, but some offer the option of
in-circuit programming, using a cable adapted for the job. This is a handy way to go.

Common Components

The following are a handful of common components and their schematic symbols. This
covers the components you will use in most circuits. In the next chapter, you will be
referring to these schematic symbols when you combine these components into circuits
using schematic diagrams (see Appendix C for a more complete list of schematic symbols).
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Switches

Figure 2.1

Schematic symbol for a O O
switch and a variety of

switches.

Switches pass or interrupt the flow of electricity. A simple switch, like those shown in
Figure 2.1, has two interchangeable leads. The leads are attached to two contacts inside the
switch that can put them in contact with each other or be separated by the action of the
switch. Many switches are simple mechanical devices that move the contacts, but there
are some interesting variants. Magnetic switches, for example, usually have two very thin
metal leaves inside, and when a magnet is brought near the body of the switch, the leaves
touch and conduct current. Ball switches or tilt switches have a metal ball that is brought
into contact with the two leads by tilting the switch.

Switches are rated by the maximum voltage and current that they can conduct. A switch
can generally be used to control any voltage or current less than the maximum, so a switch
rated for 120 volts, for example, will work fine in a 5-volt circuit. If you're using a switch as
an input to a microcontroller, you’ll be passing a very small amount of current through it,
so you should feel free to make your own switches from any mechanical devices that cause
metal things to either touch or not.

There are a large variety of switches available, and it’s useful to have a few in your toolbox
at all times for various purposes. There are a few characteristics of switches to know about:

Switches are either normally open (N.O.) or normally closed (N.C.). A normally open switch
will conduct only when you activate it, and a normally closed switch will conduct only
when not activated.

Switches can be momentary or toggle switches. Momentary switches (or pushbuttons)
spring back to their normal position after you release them. Toggle switches stay in the last
position to which they were set. Remote control buttons and keyboard keys are momentary
switches, whereas household light switches are toggle switches.

We keep a few momentary switches and a few toggle switches on hand at all times.
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Resistors

Figure 2.2

Schematic symbol for
a resistor and a pile of
resistors.

Resistors give electricity something to do: they convert electrical energy to heat. Thus, they
prevent the dreaded short circuit. Resistors have two leads with no polarity (no positive
and negative side) so the leads are interchangeable (see Figure 2.2). Resistors are rated in
ohms, indicating how much resistance they offer in a circuit, and in watts, indicating the
maximum power that they can take. The value of a resistor will be written right next to its
schematic symbol. The value of an actual resistor can be identified by

1. The package
2. Decoding the stripes from a chart (see Appendix C)

3. Checking it using a multimeter set to measure resistance.

For most of the circuits you’ll be building, you’ll put very little power through the resistors,
so a low power rating (1/4 watt or 1/8 watt, for example) will be fine.

You'll need a variety of different values of resistors. One-quarter watt or 1/8 watt resistors
will work for most electronic applications. Resistance values of 220 ohms, 1000 ohms (1K
ohm), 10K ohms, and 22K ohms are the ones you’ll need the most for the applications in
this book. If you keep them in their packages until you use them, it will save you having to
learn how to decode the colored bands on the side. However, the color code can be found in
Appendix C.

Variable Resistors

Variable resistors resist the flow of electricity to varying degrees. Figure 2.3 shows a variety
of variable resistors. As you will see later in the book, these are very common transducers
for analog input. Thermistors convert a change in heat to a change in resistance. Photocells
or photoresistors change their resistance in response to changing light levels. Force-
sensitive resistors respond to a changing force exerted on them. Flex sensors change their
resistance when they are bent to varying angles. All of these are variable resistors. Like
fixed resistors, all of these will have two non-polarized (interchangeable) leads.
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Figure 2.3

Variable Resistors. NS
Schematics from Ny
left to right: generic

variable resistor,

photocell, thermistor,
potentiometer. Images
from left to right:
photocell, thermistor,
potentiometer, flex
sensor, force-sensitive ';
resistor (FSR). |

The most common of all variable resistors is called a potentiometer, or pot for short.

This is what is behind every volume knob. Pots are a little different than most variable
resistors because they have three leads. If you pop open a pot, you would see that the
middle lead is connected to a wiper that moves along a band of conductive metal. The two
outside contacts are the ends of the band. As the wiper moves closer to an end contact,

the resistance between the wiper and that contact goes down while the resistance to the
opposite contact goes up. Some schematics will show two connections to the potentiometer,
in which case you would use the center wiper and either of the end contacts.

Variable resistors are great fun to use in physical computing projects, so buy any that you
find interesting. Definitely buy the most common variable resistor, a potentiometer. A 1/2-
watt potentiometer that ranges from 0-10K ohms will be sufficient. Try to get a “linear
taper,” which gives you an even distribution of resistance instead of an “audio taper,”
which has a logarithmic curve to its distribution of resistance and is used specifically for
sound volume. Photocells (light-sensitive resistors) and thermistors are easy to find and
find unique applications for.

Capacitors

A capacitor is a bit like a savings account. When times are good and electricity is flowing
into a capacitor, it stores up the charge. When the current is removed, the capacitor releases
its charge until it’s got no charge left. Just like a bank, there is a delay between the time the
charge is put into a capacitor and when it’s released. Unlike a bank, you can use this to your
advantage. For example, capacitors can serve to smooth out erratic electrical flow, releasing
charge when the current dips, and store excess charge when the current spikes. Capacitors
are rated by how much charge they store, which is called their capacitance. Capacitance is
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Figure 2.4

Capacitors in
schematic (unpolarized
and polarized) and
actual capacitors (left |
to right: ceramic,

tanatlum, electrolytic

capacitors). h

.—/\
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measured in farads (F). A farad is really a lot of charge, so most of the capacitors you’ll use
will be measured in microfarads (mF or pF), picofarads (pF), or nanofarads (nF). Capacitors
all have two leads. Some capacitors are unpolarized, meaning that it doesn’t matter which
side you connect to where. Figure 2.4 shows a variety of capacitors, both polarized and
unpolarized. If you are using a polarized capacitor, a + or — sign should be printed on the
outside of the capacitor itself. The + side of the capacitor goes toward the higher voltage in
your circuit, and the — side goes toward lower voltage.

sjusuodwo) uowwio)

Capacitors come in lots of different shapes and are made of different materials (for
example, ceramic, tantalum, or electrolytic), but they all do pretty much the same thing.
Tantalum and electrolytic capacitors are higher quality and last longer. Pay attention to
your schematic diagrams; if a polarized capacitor is called for, make sure to use one. The
most common values you’ll need for this book are 22pF, 0.01pF, and 0.1 pF ceramic or
electrolytic capacitors, and 1pF and 10pF electrolytic capacitors.

Diodes

Figure 2.5 ’
Diode schematic

and general-purpose

diodes.

¥} i

.// |
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A diode is like a one-way street: it only allows electricity to flow in one direction and not
the other. This means that by definition diodes are polarized, meaning that they can only
be placed in a circuit in one direction. Figure 2.5 shows two different types of diodes.

the burly-looking ones on the right can carry more current. The two sides are called the
cathode (-) and the anode (+). You may have to consult the packaging or look for + or

— signs on the outside of the diode itself to tell one lead from another. Diodes have a band
on one end that indicates the cathode and the forward current direction. Current will pass
when it’s flowing toward the band from the other end of the diode and will block current
in the other direction.

You'll use two types of diodes in this book: general-purpose diodes, such as the 1N4002,
shown in Figure 2.5, and light-emitting diodes. An LED (Light-Emitting Diode) is a diode
that also emits light in the process. Figure 2.6 shows a number of LEDs in different colors.
The shorter leg is the cathode (-), and the longer leg is the anode (+).

Figure 2.6
LED schematic and

LEDs. @

LEDs are the most common form of output from most microcontrollers because they take
very little power to turn on. The first program you will write on a microcontroller will
light an LED. The cheapest LEDs are not very bright, but it’s possible to get LEDs bright
enough to read by. They’re used in outdoor video displays, stoplights, and many other
places because they can offer a lot of light for relatively little power. There are also infrared
LEDs that are invisible to human eyes, but work very well for wireless signaling. These are
the main component in most remote controls. Though it’s tempting to get super bright LEDs
for every application, the cost can add up. It’s best to keep a handful of the cheapest LED’s
in your toolbox to use whenever you need an indicator light. LEDs rated at or below 5 volts
and 20 milliamps or with a forward voltage rating between 2.5 and 5 volts will work for
most microcontroller applications. Avoid the flashing LEDs.

Transistors and Relays

Transistors and relays are switching devices. Normal switches can be thrown by your
finger, but these can be thrown by an electronic signal from your microcontroller. Think
of them as small switches that activate larger switches. When you put a small amount of
current through the small switch (the base in a transistor, or the coil in a relay), it activates
the large switch, letting a large amount of current flow through it. Transistors are actually
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Figure 2.7
Transistor and relay :\O_

schematics, and A0 »

1
transistors. gl »
1
1
1

capable of more than that, but you’ll start by using them as electronic switches. We’ll
explain them in more depth in later chapters.

There are two types of transistors you’ll use in the examples in this book. The first type
you will use is the very common 2N2222 transistor. In the advanced section, you will

use a TIP120 Darlington transistor, which you’ll use for switching devices that use a

large amount of current. It looks identical to the 5-volt voltage regulator mentioned below
but performs a very different function, so be sure not to confuse them. The transistors
themselves will usually have some markings to indicate their type. Keep the packaging for
distinguishing between the three leads. Figure 2.7 shows the two types of transistor in this
book on the left, and the two most common relays on the right.

The best relay to start with is a 5-volt reed relay. It can be switched with 5 volts at 20
milliamps (coil power), which is just right for the output of a typical microcontroller, and
can then turn on a 120 volt, 0.5 amp load such as a 60-watt light bulb. Reed relays usually
look like little tubes that barely fit in your breadboard. You can get reed relays from Digi-
Key that come in a standard chip shape that connect to your board more easily. The part
numbers are listed at the end of the chapter. You will find other relays that can switch
larger loads, but many of them will require more power to be switched (coil power) than
your microcontroller can provide without additional circuitry. Solid State relays are really
great because they can usually be operated by your microcontroller and switch much bigger
loads. They are more expensive than mechanical relays, however.

Wires

Figure 2.8 I
Wires of various types. !
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The wire used to connect components comes in a wide range of sizes and types, but there are a
few rules of thumb you need to remember. Thicker wire can carry more current. The American
Wire Gauge (AWG) rating is the system we use. In that system, the bigger the number, the
thinner the wire. The number indicates fractions of an inch, for example, 22-guage wire is 1/22
of an inch in diameter. Most household wiring is 12- or 14-gauge, for example, but since you
won't need to carry that much current, you'll typically use 22-gauge wire.

Wire comes in two varieties, solid core and stranded. Figure 2.8 shows both types of wire.
Solid core wire is stiffer and better for building circuits because it fits more easily into
solderless breadboard (more on that later). 22-gauge solid-core wire, sometimes called hook-
up wire, is what we’ll use most often. If cutting and stripping wire is not your cup of tea, you
can get jumper kits that contain various common lengths of wire already cut and stripped.

Solid hook-up wire gets unwieldy when you need to run multiple wires over longer
distances. Stranded wire has many fine strands of wire inside the insulator and is more
flexible and better for longer runs. You can also get multi-conductor wire, which contains
multiple wires in one insulating jacket, like ribbon cable or telephone cord. Stranded wire
is too soft to insert into the holes of your breadboard, however. You’ll need to solder (see
the “Tools” section below) a stiff post called a header to the end of your stranded wire in
order to connect it to a breadboard.

Power Supply

Figure 2.9
A typical DC power

supply.

All of the circuits in this book will use DC power (like a battery) as opposed to AC power
(like a wall socket). You could use a 9-volt battery for all of your projects, but exhausting

it while you’re building the project will just add to the list of things that could go wrong.
You are better off with an AC/DC converter. You might have one of those “wall warts” from
an old piece of electronics in your closet, like the one shown in Figure 2.9. There are two
important statistics you need to know about your DC power supplies: the voltage and the
amperage they can supply. The projects in this book will mostly need +5 DC volt power.
However, you should use a power supply that’s between 8 and 15 DC volts because most of
the microcontrollers have a built in voltage regulator, which can convert that higher voltage
into 5 volts. When considering the amperage of your supply, the more amperage the better.
You will need about 300 milliamps for most projects, but when you start adding motors
and other actuators that create heat or motion, you’ll need more amperage. It’s best to get a
power supply that can supply one amp (1000 milliamps).
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Power Connector

Figure 2.10
A coaxial power
connector.

If you are anxious to get going, you can clip the connector off of any power supply and plug
the wires directly into the breadboard. Never do this with the power supply plugged in—
that can lead to sparks and short circuits if you're not careful, and it means you can never
use your power supply for anything else again. It’s useful to be able to re-use your power
supply, and it’s safer to have a connector you can plug and unplug. Nine-volt battery snaps
are common and will work nicely for portable projects with a 9-volt battery, but it’s easy to
reverse the terminals on them, with bad effects. Coaxial connectors are safer. It’s necessary
to match the inner and outer diameters of the jack to the power connector you want to use.
The model we recommend has a 2.1mm inner diameter, and a 5.5mm outer diameter that will
match most common AC/DC power adaptors. It’s shown in Figure 2.10.

Voltage Regulator

Figure 2.11
A voltage regulator.

Voltage regulators are components that convert a varying range of voltages to a fixed
voltage. You'll use them to convert the 8 to 15 volts coming from our AC/DC power
converter to the 5 volts you'll need for your projects. Most stamp-like modules have a
voltage regulator built in, but they tend to be cheap. We usually recommend adding an
external voltage regulator in case you destroy the one on the chip. The ones you’ll use are
model 7805 voltage regulators. like the one shown in Figure 2.11.

RC Servomotor

RC servomotors (servo, for short) are easy to control from a microcontroller and offer a
wide range of possibilities for controlled movement. Radio Shack does not sell servomotors,
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Figure 2.12
An RC servomotor.

but most hobby shops do, and our online suppliers do as well. The bigger ones might be too
much for your power supply, but if you buy the cheapest one they sell, you’ll be fine. The
Hobbico c¢s-61 is a common small servo that’s readily available and relatively inexpensive.
It’s functionally identical to the Hitec HS-300 model shown in Figure 2.12. If you start
using a number of these, you should look into dedicated servo controllers and external
power supplies.

Serial Connector

Figure 2.13
A DB serial connector.

Serial connectors like the one in Figure 2.13 are the connectors that allow you to connect
your serial cable to your breadboard. The ones needed for the projects in this book are
DB9 female connectors with solder terminals (also called solder lugs) on the back. You’ll
need a serial connector for downloading your programs to the microcontroller and for
communication between the microcontroller and the multimedia computer, so it’s good to
have two connectors for the sake of convenience.

Serial Cable

Serial cables are used to communicate between multimedia computers and
microcontrollers. They’re used both to download new programs into the microcontroller
and to send messages between the microcontroller’s program and the multimedia
computer’s program. Look for a DB9 male to DB9 female cable like the one shown in Figure
2.14. Don’t get a null modem serial cable, as those have two important wires crossed inside
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Figure 2.14
A serial cable with DB9
connectors.

the cable. Although you could use one cable and switch it between the programming and
communication, it is worthwhile to buy two dedicated cables.

Clock Crystals

These are the timekeepers for low-level processors. You'll only need clock crystals if you
are planning to use a low-level processor instead of a mid-level module. If you're using a
BX-24, Basic Stamp, or Basic Atom 24, then you can skip this component. They come at a
variety of speeds, but 4 MHz is the best place to start for the processors we’ll reference.

Headers

Figure 2.15
Headers.

Headers are small metal posts to which you can solder the wires of various components in
order to make a good, stiff connection to the breadboard. Figure 2.15 shows a typical row of
headers. They come in rows attached together on 0.1-inch spacings, and are easy to break
apart for individual use. You’ll use a lot of these, and they’re cheap, so get at least 100 to
start. Radio Shack does not carry these, but you can improvise with stiff wire.

Project Box

This is the home for your breadboard. Theoretically, when you’re done with your project
you make your circuitry safe from the world by enclosing your breadboard in a box. Even
during development, it’s nice to anchor long wires to the box so they don’t accidentally
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get ripped out of your breadboard. Any old box you have lying around would do, but the
project boxes made for this purpose are cheap and they’re easy to make holes in. Typically
you attach the breadboard to the top of the box to allow for maximum access. Get a box
that’s big enough to hold your breadboard with room on all four sides and a few inches of
space above it.

Cable Ties

Figure 2.16 ,
Cable ties.

These are useful for strapping your wires down so they don’t escape your breadboard.
Once you get started with cable ties, it’s easy to become addicted to them as a general
construction tool. Figure 2.16 shows the type that we use all the time.

USB-to-Serial Adaptor

Figure 2.17
A USB-to-serial
adaptor.

Yo,

The microcontrollers you’ll be using communicate with multimedia computers via serial

communication. If your computer only has a USB port, you'll need a USB-to-serial

adaptor. Though USB is a serial communications protocol, it’s much more complicated than

the form of serial communication you’ll be using. Apple computers and some new laptop

PCs have abandoned the old type of 9-pin RS-232 serial ports in favor of USB ports. Check

the back of your computer for a connection with 9 pins, usually with markings like

ololol or “COM1.” That’s a 9-pin serial port. If you don’t have it, you’ll need one of these

adaptors. On Windows PCs, just about any USB-to-serial adaptor will do the job; if you're
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a Macintosh user, you'll need to get one that’s got software drivers that work with your
machine. We recommend the Keyspan USA19HS because it’s compatible with every
Macintosh1 operating system through OSX 10.3, and it’s got a DB-9-style serial connector
like most PCs. It also works on PCs. It’s the model shown in Figure 2.17.

Tools

There are only a few tools you’ll use all the time when building electronic projects. Like
with any hobby, you might develop tool lust, and start buying all kinds of esoteric tools
that you don’t necessarily need at first. Feel free to indulge your lust in the future, but for
now, stick with these staples. Your pocketbook will thank you.

Figure 2.18

An array of the tools
you’ll use all the time.
Left to right: diagonal
cutters, screwdriver,
wire stripper, needle-
nose pliers.

Soldering Iron

Even if you use a breadboard, you will need a soldering iron for your more permanent
connections. Get a soldering iron with a stand and a sponge. Since the iron gets very hot
when you use it, a stand gives you a safe place to put it down without starting a fire. A
sponge allows you to clean the tip, which makes for much faster and reliable soldering. Get
an iron with a narrow point tip in order to do fine soldering; 1/32" tips will do you well.

Solder

Get rosin core solder, 22 AWG or higher. Solder is measured using the same standard as
wire, so higher numbers mean thinner solder. Anything thicker than 22AWG tends to be
awkward for electronics work. Get lead-free solder if you can, as it’s safer for you.

Needle-Nose Pliers

Breadboards get cramped, and it’s often difficult to get your fingers on one wire or component
without disturbing the others. Needle-nose pliers are essential for solving this problem.

11t is not common to program these microcontrollers on a Macintosh, as we mentioned previously, but after you finish
programming you may want to reuse the USB-to-serial adaptor to talk to your own software. That software might be
running on a Macintosh, so it’s useful to have an adaptor that works on both platforms.
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Wire Strippers

There are lots of different types of wire strippers. Their purpose is to take the plastic
insulation off without cutting the wire inside. Get whichever you like, as long as the ones
you get can strip the insulation from the standard 22 AWG hookup wire.

Wire Cutter

Many pliers and strippers already have a cutting edge in them, but a separate pair of
diagonal cutters is useful for making clean cuts.

Mini-Vise or Helping Hands

Figure 2.19 o
A Mini-vise (left) and
helping hands (right).

The trickiest part of soldering is that you need to hold four items: the two components or
wires to be soldered, the solder, and the soldering iron. Unfortunately, we only have two
hands. A vise or a pair of clamps to act as a spare set of hands helps. Some vises have
clamps or vacuum seals on the bottom to hold them to the table, but for soldering, your vise
does not have to be very strong or secure, as long as it stays put on the table. “Third hands”
are another alternative. These have two alligator clips mounted on swivel bearings to hold
the two components to be soldered. They allow more flexibility than a vise, but are more
delicate. If you have cash to spare, it’s often useful to have both, as shown in Figure 2.19.

Small Screwdrivers
Precision drivers in both Philips and slotted heads always come in handy.

Drill and Drill Bits

If you have a handheld drill, you’ll use it frequently. A few common bit sizes you might use
are 7/64", 1/8", 5/16", and 1/4".

Multimeter

A multimeter is a device used to test various electrical properties of a component or in a
circuit. It’s one of the most important debugging tools you can have when you’re building
circuits. Make sure your meter can measure voltage, resistance, and continuity. Many
meters can measure more than this, but these are the most common properties you’ll
measure with a meter. The meter in Figure 2.20 is basic, but functional for everything
you’ll do in this book. Chapter 3, “Building Circuits,” explains a bit more about what a
meter is used for, if you'd like to know more before you buy.
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Figure 2.20

A basic multimeter. rm

Hot Glue Gun

A hot glue gun like the one in Figure 2.21 comes in handy for a multitude of reasons in
physical computing. Hot glue makes a decent insulator on some wires, and it holds the
universe together.

Figure 2.21
A hot glue gun.

Toolbox

You don’t need a big heavy metal toolbox, but it’s handy to have somewhere to put all your
stuff. Fishing tackle boxes work well because the tiny compartments work great for holding
components, but a Tupperware container or shoebox would work fine as well.
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Shopping List

Microcontroller Options

ITEM

NOTES

MANUFACTURER URL

Parallax Basic Stamp 2 (BS-2)

NetMedia BX-24

Basic Micro Basic Atom Pro 24

Microchip PIC 18F452

The earliest of the mid-level
modules. Very common, but
lacking some features of some
of the others

Mid-level module. Slightly more
complex programming environment
and language; many good features

New to the mid-level market, but
simple programming environment
with some nice new features

Low-level microcontroller. Not
recommended as a starting place,
but good if you're doing lots

of projects

http://www.parallax.com

http://www.basicx.com

http://www.basicmicro.com

http://www.microchip.com

Component Shopping List

PRIORITY ITEM JAMECO RADIO SHACK NOTES
PART No. PART No.
1 Breadboard 20722 276-174 6" board
(2 bus rows per side) (1 bus row per side)
1 DC power supply 170245 273-1667 5-9V DC and
(12V, 1000mA) (3-12V, 800mA) 700-1500mA
2 Power supply 159610 274-1577 2.1mm X 5.5mm
connector male
2 5V DC voltage 51262 276-1770A There are many
regulator variations on the
(7805 regulator) 7805 regulator:
7805A, 7805T,
78HCTO05, and
more. For your
purposes, any of
them will do
the job.
2 LEDs, Green 34761 n/a
1 LEDs, Red 94511 276-307
2 LEDs, Yellow 34825 276-351
1 220 Ohm resistors, 30470 271-1313
1/4 watt
1 1K Ohm resistors, 29663 271-1321

1/4 watt
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PRIORITY ITEM JAMECO RADIO SHACK NoTES
PART No. PART No.
1 10K Ohm resistors, 29911 271-1335
1/4 watt
1 22K Ohm resistors, 30453 271-1128
1/4 watt

1 Capacitors, 0.1uF 15270 272-1053

1 Capacitors, 1uF 94160 272-1434

2 Capacitors, 10uF 29891 272-1025

(this is polarized)

1 Switch 187805 (lever) 275-017 (roller) Any store-
bought or
homemade switch.

1 Switch 164081 980-0820 Alternative
switch: magnetic.

1 Switch 106112 275-1549 Another
alternative switch:
pushbutton.

1 Switch 106067 275-324 More alternatives:
toggle switches.

1 Potentiometer 29081 271-1715 Always good to
have one of
these handy, in
addition to other
variable resistors.

1 Variable resistors:

Photoresistor 120299 276-1657 Look for ones
that vary
anywhere from
0 to 100 K.

Flex sensor, 10-100K 150551 n/a

Thermistor , 10—100K 207036 271-0110

1 Servomotor, 157067 n/a

Hobbico cs-61

1 Serial cable, 9-pin 208581 260-0117 Do not get a Null
modem serial
cable. Make sure
your cable has a
female adaptor
on one end and a
male on the other.

1 9-pin D-sub female 15771 276-1538 Should mate

connector

with serial
cable, above.
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Component Shopping List (continued)

PRIORITY ITEM JAMECO
PART No.

RADIO SHACK
PART NoO.

NOTES

1 USB-to-serial adaptor Keyspan USA19HS

Transistors—
TIP120 Darlington

NPN Transistors,
type 2N2222

Relays

Clock crystals, 4Mhz

Headers

Project box

Standoffs

Screws for standoffs,
size #4-40, 1/2"

32993

38236

Digi-Key*
306-1034-ND

14592

103376

18905

133604

106809

26-183

276-2068

276-2009

275-232

n/a

n/a

270-1809

276-195

276-195

If your computer
doesn’t have a
serial port,
you’ll need one
of these. The
best one we've
used comes
from Keyspan
(http://www.
keyspan.com),
the USA-19HS,
listed here.

It works on

both Macs and
Windows
computers. The
Radio Shack model
listed here is
fine for Windows,
but doesn’t work
on Macs.

120V AC reed
relays or solid
state relays.

This is for PIC
users only. This
is the clock that
runs your PIC
microprocessor.

They come in
rows of 10-20.

You'll use this to
enclose your
project board.

For mounting
your board to
your box.

*Where Jameco part numbers were not available, Digi-Key Corporation part numbers were substituted. We like both
vendors, and often go to one when the other doesn’t have what we need.
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Tool Shopping List

ITEM JAMECO PART NoO. RADIO SHACK PART NoO. NOTES

Soldering iron

Solder

Multimeter

Wire, 22AWG

Flat needle-nose
pliers

Wire stripper

Diagonal wire
cutter

Mini-vise
Helping Hands

Miniature
Philips/flathead
screwdriver

Drill and drill
bits, 7/64", 1/8",
5/16" , 1/4"

Hot glue gun
Toolbox

Cable ties
Electrical tape

Alligator clips

146595

141794 Digi-Key
KE1351-ND
(Jameco doesn’t
carry lead-free
solder)

220812

Black: 36791
Blue: 36767
Green: 36821
Red: 36855
Yellow: 36919

35473

159290
161411

127167
26690
127271

n/a

72696 and 78633
n/a

145701

n/a

107422

64-2802 or 64-2184

640-0013

22-810

Red: 278-1215
Mixed: 276-173

64-2803/A

64-2803/A
64-2803/A

n/a
n/a

64-2803

n/a

n/a

n/a
278-1720
64-2375
278-1157

For example, Weller model WLC 100.
We prefer the ones with a stand, but
get the one that feels right for you.
Make sure to get one with a fine-
pointed tip.

Use lead-free when possible.

There are many models to choose from.

If you get an inexpensive one that can
read voltage, resistance, and continuity,
youll be in good shape.

Solid core hook-up wire; get several
colors.

This Radio Shack kit includes a
soldering iron, pliers, diagonal cutters,
and screwdrivers. It will serve you
well for all these tools, so we’ve listed
it for all of them. Or, check your
hardware store.

To strip 22-30 AWG.

Get a reasonably small one.

One option for holding parts to solder.
Another option for holding parts to solder.

Check your hardware store for
alternatives, too.

These sizes are the ones you’ll need
most often for wood, plastic, and thin
metal. Most hardware stores will carry
them for less than a dollar each.
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Bringing It All Back Home

Once you've got all of your parts, tools, and components, make sure you keep them

organized. Many electronic components look alike, and with no labels, it’s difficult to tell

one from another. Hang on to the labels for your components and stick them on whatever
boxes, compartments, or bins that you store the components in. You may be tempted to tear
everything open at once and start building, but a little organization at the beginning will make
your life much easier later on. One of the more irritating problems you’ll hit later on is getting
the wrong resistor value because you grabbed from a miscellaneous pile without looking.

Once you've got all of your parts in a row, you're ready to start building. We’ll add more
components in later chapters for various advanced techniques, but keep this chapter
bookmarked for replenishing your staple supplies in the future.
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Building Circuits

Once the parts are at hand, you can begin combining them into circuits. We will keep the
circuitry to a minimum, just enough to get a transducer’s signal into the microcontroller.
Once the signal is in the microcontroller, you can do in software a lot of the logical work
that used to be done in circuitry. This chapter outlines some of the methods and tools
you’ll need to build these small circuits.

The best way to learn these things is to do them, so you’ll work through some examples as
you go along.

Schematics

You will get far in physical computing using other people’s recipes for circuits. However,
you must learn to read the schematic diagrams used for these recipes.

Figure 3.1

A schematic of a
circuit versus a
drawing of a circuit.

— 1|1k
.
|

Battery

Figure 3.1 shows a drawing of the actual circuit and the schematic diagram. The schematic
is more abstract than the drawing, which gives you minimal information about each
component. The first step in reading a schematic is to decode the schematic symbols. You
saw many of these symbols for the most basic components in Chapter 2, “Shopping.” Now
you will discover a few more symbols for showing connections between components for
power and ground. In Appendix C, you'll find a glossary of more schematic symbols.

TEAM LING - LIve, Informative, Non-cost and cenuine !

sonewaYds



34 Part | - The Basics

Connection Symbols

Here’s a guide to the connection lines that connect components.
Connected wires are drawn like the one shown in Figure 3.2.
Figure 3.2

Connected wires in a
schematic diagram.

When there is a dot at the joint in the diagram, the two wires should be physically
connected. These are called junctions.

Unconnected wires look like the ones shown in Figure 3.3.
Figure 3.3

Unconnected wires in
a schematic diagram.

Different schematics will use one of these three styles. We’ll mainly use the leftmost style in
this book. When two lines skip over each other, or have no dot connecting them, the wires
they represent should not touch. They cross only for convenience in laying out the diagram.

Power Symbols

There are a number of possible power source symbols in a schematic. For example, the
circuit might be powered by a DC power adaptor, a battery, or even an AC source. Figure 3.4
shows the schematic symbols for these three sources.

Figure 3.4 +5V DC
Power supply

schematic symbols. +
Left to right: generic | | I—

DC source (+5 volts in
this example), battery,
and AC power source.

Each power source has its own symbol. The positive side of your power supply is indicated
by one of the symbols in Figure 3.4. In pin diagrams for chips, this is often labeled “Vcc”
or “Vdd.” In our diagrams this will almost always refer to the +5 volts (though occasionally
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we will use a higher voltage). Some circuits might involve two separate power supplies, in
which case the voltage should be indicated.

Figure 3.5
Ground schematic
symbols. —

Just as power is always labeled on a schematic, so is ground. Figure 3.5 shows two typical
options for the ground symbol in a schematic. Many circuits that use two separate power
supplies will join the negative side of the supplies into a common ground.

Finding Schematics

In the chapters that follow, we’ll introduce and discuss a number of circuits that serve

as the foundation for a large number of physical computing applications. It’s possible

that these circuits and a few variations will serve your needs for most of your projects.
However, if you're using a device that will not work with these circuits, then you can
usually find the appropriate circuit in the application notes or instructions for that

device. In addition, there are thousands of sensor and actuator circuits available online
produced by other microcontroller hobbyists and professionals. You may be tempted to use
a schematic or a kit for a standalone device, such as a lie detector or a light organ. These
circuits are more complicated than you need because they rely on a lot of circuitry to
route, transform, and perform logic on the signals. We suggest you stick to circuits that are
designed to take advantage of the microcontroller.

Breadboards

Breadboards are the fastest way to build circuits, but until you get used to them, they can
be confusing. It’s important to understand where the holes are connected and where they're
not connected.

The pattern of holes varies from model to model; some breadboards have only one

strip down each side, and others have multiple side rows. The basic model, with many
horizontal rows separated by a central divider and one or two long side rows, called bus
rows, is the type that we’ll focus on.

Figure 3.6 shows a two-bus row breadboard. On each side of the board are two long rows of
holes, sometimes with a colored line next to each row. All the holes in each of these lines
are connected together with a strip of metal in the back. These long strips are generally
reserved for the two most popular junctions in your circuits, 5 volts and ground.

In the center are several short rows of holes separated by a central divider. All of the holes
in each row in the center are connected with a metal strip underneath the holes. This allows
you to use the holes in any given row to form a junction connecting components together.

The reason for the center divider is so that you can mount integrated circuit chips, such as
microprocessors, on the breadboard. IC chips typically have two rows of pins that you need
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Figure 3.6

A breadboard.

The overlaid lines
show the connections
that are being made
beneath the surface.
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to connect other components to. The center row isolates the two rows from each other and
gives you several holes connected to each pin so you can connect other components.

CAUTION

When you start to put components on your breadboard, avoid adding, removing,

or changing components whenever the board is powered. You risk damaging your
components by accidentally pushing two wires together and causing a short circuit.
Later, if you have AC power, or larger DC power, running through your circuit you
could also seriously shock yourself.

Where Does the Microcontroller Fit In?

Some microcontrollers are enclosed in boxes with screw terminals for connections. Most
come as chips to be plugged into a breadboard or printed circuit board, as in see Figure 3.7.
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The vendors also sell “carrier boards,” “demo boards, ” or activity boards that act as
readymade breadboards. These extra boards will save you from making your own power
and programming connections, which are necessary if you're making the microcontroller
circuit yourself on your own breadboard. Unless you are making a very limited experiment
with this stuff, you will eventually end up needing a breadboard anyway. We suggest that
you avoid the demo boards; just buy the chip itself and use it in your own breadboard.

Push the pins of your microcontroller into the holes of the breadboard. The chip should
straddle the center divide of the board so that none of the legs are initially connected to
each other. The top of the chip is usually marked with a rounded notch or a square metal
pad around the first pin or hole.

It’s best to place your chip toward the top. Generally the lower pins get to do most of

the work, and it’s good to have some extra breadboard real estate near them. Make sure
that that the legs actually make their way into the hole and don’t get caught on the edge,
bending up behind the chip. If you have to take the chip back out, pry it gently from both
ends using a flat bladed screwdriver. The pins are easily bent, and the more you bend
them, the more likely they are to snap off.

Translating Schematics into Circuits

In every schematic, the connection lines indicate how components should be connected
physically. Wherever there is a junction in your schematic, you must join all the
components connected to that junction. The most common problems arise when you treat
the schematic as a geographic map of what the circuit should look like. The schematic
indicates how components are connected electrically. The spatial arrangement of the
components in the circuit may not match the spatial arrangement in the schematic, but all
of the connections must match up. Follow the connections from one component to the next,
and make sure that they match the schematic’s connections. Pay attention to the connected
and unconnected wires as well. Connecting wires where there is no real connection is
another common source of error, and will lead to short circuits.

Figure 3.8

Schematic and two 4@ O—
possible arrangements

of the same circuit. R
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The simple schematic and the circuit shown in Figure 3.8 are identical. Notice how the two
very different arrangements follow the same schematic. Although the components are not
in the same place in each, the connections between them are the same. For example, peek
ahead to what will be your first circuit for digital output in Figure 3.9.

Figure 3.9 2200

Digital output From microcontroller
schematic.

Z2

Don’t worry; there will be more explanation of this circuit later. For now, just use it to
practice translating from a schematic to a circuit in a breadboard. Before you look at Figure
3.10, see if you can make the circuit shown in Figure 3.9.

Figure 3.10
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Attach one leg of an LED to a ground and the other leg via a resistor to a pin on the
microcontroller. You should be able to tell that something is wrong with the way the
resistor is connected on the right just from our explanation of how a breadboard works.
The resistor is connected to itself because both ends are in the same row. You know that
electricity follows the path of least resistance, so the resistor is rendered useless, and you
potentially have a short circuit if the LED does not provide enough resistance by itself.
Instead, the components are connected in series by first connecting one end of one resistor
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to the same row as the microcontroller’s output pin. Then use any unused row to serve as a
junction for the other end of the resistor and the long lead of the LED. Finally, put the short
lead of the LED into one of the long rows on side of the breadboard (this will be ground).
Remember, because the LED is a diode, it will only conduct electricity in one direction,
from the long lead (the anode) to the cathode (short lead).

Using a Multimeter

Multimeters can act as your X-ray vision to see the flow of electricity through your circuit
and components. You can debug your circuit by checking that the voltage between any two
points in a circuit, or the current flowing past a certain point, is what you expect it to be.
Oscilloscopes can look at changes in these properties over time, but they are much more
expensive and more than you need to get started. Multimeters are also used to measure the
electrical characteristics of a component, such as the resistance or capacitance. There are
color codes and letter codes to identify the value of all components, but the surest way to
know the value of a component is to measure it directly.

There are a few different kinds of meters to know about. Analog meters have a needle that
moves along a dial to indicate the result of your test. These are usually more sensitive, but
harder to read than digital meters, such as the one shown in Figure 3.11, which give you
the result on an LCD screen. Digital meters also come in two flavors: normal and auto-
ranging meters. Auto-ranging meters will automatically adjust if the component you're
measuring has a much higher or lower value than you anticipated. Normal meters will
have a range of magnitudes for each characteristic you can measure. You’'ll need to set
your meter to the magnitude that you think is appropriate, take a measure, and change
the magnitude if you don’t get the result you expected. Auto-ranging meters are more
expensive, but often more convenient. Unfortunately, different manufacturers use different
icons to mark the multiple functions of a multimeter.

Figure 3.11
A digital multimeter.

/
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Voltage readings are like blood pressure readings: blood pressure is the first thing a doctor
checks, regardless of what may be wrong with you. Likewise, you should check the voltage
between power and ground first, regardless of what you think the problem is. Voltage
measurements are taken with the circuit intact and powered. It is important to distinguish
DC volts (sometimes symbolized by a solid line over a dashed line) from AC volts (sometimes
symbolized by a tilde). To see the voltage between two points in your circuit (the most
common place is between power and ground), touch the black lead of your multimeter to

a ground connection in your circuit and the red lead to the place where you expect to see
voltage. Try this now by touching the positive lead of your multimeter to one lead of the
power supply that you bought and the black lead to the other lead, as shown in Figure 3.12.

Figure 3.12
Measuring voltage.

"

Your multimeter might read something like “12.3V” (which is close enough for you to call
12 volts). If you have an analog readout, the needle should go half way (on a 0-24 scale).
If you get a negative reading, then you have the positive and negative leads reversed.
There is no harm done to the multimeter when you reverse positive and negative. In

fact, this is often how you figure out which wire on your power supply is positive and
which is negative. This is known as the polarity of the circuit. Be aware that many

other components (in particular your microcontroller) may not be as forgiving if you
reverse the polarity like this. If you reverse the power and ground connections on your
microcontroller, you're likely to destroy it. So use a meter to check that you've got the
connections right before you add the microcontroller to your circuit!

Checking for continuity allows you to see that things you think are connected really are
connected. Many meters have an audible continuity check, which beeps so you don’t have to
take your eyes off your circuit to look at the multimeter’s display. Continuity check is usually
the same setting as diode check. When you touch the probes of the meter together, it should
beep. In the continuity setting, the two leads of the multimeter are interchangeable. To test

a switch, as shown in Figure 3.13, you touch the two ends of a switch and see that you get
continuity (and the meter will beep) when the switch is on and not when it is off.

There are a few common tasks that a meter gets used for all the time. Resistance of a fixed or
variable resistor is measured by setting the meter to measure ohms (the usual symbol is ).

We can check which poles of a switch are connected using the continuity check or diode check
(sometimes symbolized by a musical note, a set of waves, or sometimes by a diode). We can check
the direction of a diode using the diode check as well. To do these tests, remove the component
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Figure 3.13 |§p

Testing a switch for :
continuity. m
A F ]
] p \

from the circuit and touch its leads to the meter’s probes. Try measuring a few resistors by setting
your meter to measure ohms and see if their value is what you expected. Try a diode with the
meter set to diode check. Try reversing the leads on your diode to see how the result differs.

Soldering

In the spirit of high-level rapid prototyping, you should solder only when there is no other
way to make the connection. We love the solderless breadboard for this reason, but you will
encounter components or wires that don't fit into the breadboard. You might also have to
solder longer wires on a switch or a sensor that needs to be distant from the breadboard.
When you’re happy with the design of your project, you may want to make it more robust by
redoing all the connections on a soldered board, also called a printed circuit board (PCB).

Suuapjos

The trickiest part of soldering is holding four items steady: the two components being
soldered, the solder, and the iron. It’s useful to have a small vise or a pair of clamps
(helping hands) to hold the two things being soldered, freeing your hands for the iron and
the solder, as in Figure 3.14.

Before you start soldering, let the soldering iron get hot, wipe the tip on a damp sponge
quickly, and then melt some solder directly onto the tip. Coat the tip smoothly; you don’t
want a glob of solder on the end. If you get a glob, tap the iron gently on the edge of a metal
tin can to get the glob off. You should have a nice, smooth coating remaining. This is called
tinning the iron, and it makes the solder flow more smoothly when you work.

The first rule of soldering is to heat the joint, not the solder. This means that the solder
should not touch the iron directly. Instead, put the two components being soldered together
so that their metal parts are touching. Then touch the solder to their joint from the other
side. This lets the heat travel through the components to the solder, melting it. This ensures
that solder can ooze between all the crevices of the joint, and everything will cool at the
same rate. It is very tempting to heat the solder directly and drip it over the joint. You
might get a joint that will look fine, and even work for a long time (right up until you need
to show the project). But that joint will be brittle because the metal of the solder and the
components heated at a different rate. The joint will break right at the wrong moment.

Following the first rule of soldering is difficult when the tip of your iron is not clean. The
heat of the iron does not transfer as well to the joint—it takes a long time for the heat to reach
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Figure 3.14
Holding components Iron
for soldering.

Solder
Iron should
touch the parts,
not the solder
itself. Wire

Post

the solder, and you become impatient and just touch the solder directly to the iron. Don’t do
this. Wipe the tip and tin it again frequently. You’'ll make better solder joints and make your
soldering iron tip last a lot longer.

Try not to overdo it with the solder. Big fat solder joints have more opportunity to
accidentally rub up against another joint to form the dreaded short circuit.

Needless to say, you should be careful where you lay the hot iron and how you pick it up.
The fumes from the solder are another safety issue because some solder contains lead. Make
sure the room is well ventilated. Use a fan to send the fumes out the window instead of up
your nose, which will keep you from breathing it in and becoming progressively dumber as
the lead kills your brain cells. Don’t forget to turn off the iron when you are done.

You can also undo a solder joint. You can remove the solder using suction (you will need to
buy a de-soldering tool) or absorption (you will need to buy a solder wick).

There are two components you’ll need from the beginning that require soldering, so this will
be your first solder project. First, you need to solder wires onto a power connector. Second,
you need to solder headers onto a serial connector. See the following exercise, “Soldering
Exercise: Serial Connector,” in which we describe how to solder the serial connector.

Powering the Breadboard

We will discuss a couple of ways to connect power to your board. For all of them, however,
you will have to be able to identify the positive and negative leads of your power supply. This
process was described in the previous section, “Using a Multimeter.” Mark the leads with
tape or a marker so that you clearly remember which is positive and which is negative. After
you have established which wire is which, unplug the power supply again before you start
connecting it to your board.

Connecting the Quick and Dirty Way

You could put the bare ends of your connector directly into the breadboard now, plug the
connector into your AG/DC power supply, and you’d have power to your board. However,
for extra safety, we recommend soldering two headers onto the ends of the wires, as shown
on the far left in Figure 3.15.

To insulate the headers, you can cover them with hot glue, as shown in the middle of
Figure 3.15.
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Figure 3.15 1
Methods for connecting
power to the board.
Soldering headers onto
the bare ends of a DC
power connector (1)

is quickest and least
safe. Soldering to two
connected headers is
safer (2). Insulating

the connection is safer
still (3). Using a battery
terminal connector

is even safer (4), and
using a coaxial power
connector is safest and
most convenient (5). Fast

s’

SOLDERING EXERCISE: SERIAL CONNECTOR

You'll need a serial connector that can plug into your breadboard in order to program the
microcontroller. This requires soldering, so there’s no time like the present to do it. Once you’ve
soldered one job, the rest are easier.

The serial connector we're using has nine solder terminals on the back. You’ll be soldering four
headers to four of the connectors. Specifically, you’ll use connectors 2, 3, 4, and 5. The numbers are
hard to read, so compare your connector to the one in Figure 3.16.

Figure 3.16
A serial connector,
front and back.

To make this connector, break four headers off a row together. Use your vise or helping hands to
hold the pins next to the four appropriate solder terminals. Make sure all four headers are held
securely at once. The soldering iron tends to soften the plastic that holds them, which can loosen
the pins if you hold the iron on them for too long. Tin your iron and touch it to the top of each
solder terminal while holding the solder to the bottom (where the terminal meets the pin). Be careful
not to get too much solder on each connection. If the connections touch, you’ve got too much
solder. When you’re done, check each header and its corresponding hole with a continuity meter.
Check each header with the other headers as well. You should not have continuity between headers.
Each one should be connected only to its hole.

Once you’ve made a serial connector, you’ll not only have a grasp on how to solder, you'll also be
ready to start working with the microcontroller.
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Connecting the Professional Way

If you want a more professional power connector that will allow you to disconnect your
power adapter safely and reuse it for other projects, then build a power connector for
your circuit. The easiest type of connector is a 9-volt battery snap, as shown in Figure
3.16 (fourth from left). Battery snaps attach nicely to 9-volt batteries but not very well to
standard power adapters. It is also easy to accidentally reverse the polarity with battery
snaps, which can fry a voltage regulator.

Instead, we recommend a coaxial connector, as shown on the far right in Figure 3.16. See
the following exercise, “Soldering Exercise: Power Connector,” for details on how to do it.

Voltage Regulators

In this section you will be using a voltage regulator to supply ground and 5-volt power to
the long strips of holes on the sides of your breadboard. Some breadboards have power on
one side and ground on the other, but it is more convenient to have both power and ground
on both sides. We will show you both styles of breadboard here. For the rest of the book we
will use the boards with two long rows on each side.

Built-In Voltage Regulators

Most of the circuits you’ll build on a breadboard, even the ones with no microcontroller,
are likely to work at 5 volts. It’s so common, in fact, that most high- and mid-level
microcontrollers (for example, Basic Stamp, BX-24, and Basic Atom Pro24) come with a
5-volt voltage regulator built in. These regulators allow you a little bit of latitude in the
voltage you supply (from 8 to 15 volts DC), converting whatever you input to 5 volts DC.
Next, you distribute the 5 volts and ground to the side rows of your breadboard.

The quickest way to get going is to use the built-in 5-volt voltage regulator of your
microcontroller, as in Figure 3.17. Connect the positive side of your power supply (5 to 15
volts) to the top-right pin and ground to the next pin down. Your microcontroller will then
give an even 5 volts out of the fourth pin down. The ground for the 5 volts will be the same
as the big power supply. Run wires to distribute ground and 5 volts to the side rows for
future circuits.

Figure 3.17

A microcontroller with
a built-in regulator,
powered directly from
a DC power supply.
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Single Power Strip Board Double Power Strip Board
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SOLDERING EXERCISE: POWER CONNECTOR

Coaxial power connectors mate with the connectors on most DC power supplies. Usually, the center
of your power supply connector is connected to voltage, and the outside is connected to ground.
When you measured for voltage in the section above on using a multimeter, you saw this in action.
If you got a positive number when the red lead was in the center of the connector and the black
was on the outside, then the center was indeed connected to power. In this exercise, you'll solder a
connector to mate with that kind of center-positive power supply.

A coaxial power connector has a plastic sleeve that screws off to uncover the guts of the connector.
Inside, you'll find two tabs with holes in them. Set your multimeter to continuity check (or diode
check), touching one probe to the center pin of the connector and the other to one of the tabs.
When you get continuity, you know which tab is connected to the pin and which is connected to the
outer ring. Do a continuity check on the outer ring and the other tab just to be sure. The inner pin
will have the power wire connected to it, and the outer ring will have the ground wire attached to it.

Be sure to put the cable through the plastic sleeve now, because you will not be able to fit it over the
ends of the cable after you have soldered it. Cut two lengths of wire about 6 to 8 inches long, one

red and one black. Strip about 1/2 inch of insulation from either end. Bend one bare end into a hook.
Hook the red wire onto the tab that’s connected to the center pin, and the black wire onto the tab
that’s connected to the outer ring. Use a vise or helping hands to hold the wires and the connector.
Use needle nose pliers to squeeze the hook ends of your wires tight to the tabs. Now you’re ready to
solder. Tin your iron and touch it to either tab, as close to the hole as possible. Touch the solder to the
other side. When the solder flows over the joint and you have a small bead of it surrounding the wire
and the hole, remove the solder and the iron and let it cool (15 to 30 seconds is plenty of time). Repeat
the procedure on the other tab and wire. When you’re done, the wires should not move on the tabs. If
they do, re-solder until they’re secure. Your connector should look like the one in Figure 3.18.

Figure 3.18
A properly soldered - '
power connector. E.' =

Check for continuity between the other end of the red wire and the center pin. If you get it, your
solder joint is good! Do the same for the black wire and the outer ring. Now slip the plastic sleeve
over both wires and screw it back onto the connector. It’s also convenient to twist the wires together
so they move as one and don’t get tangled.

Now, on the other end, solder two headers, as shown third in Figure 3.16, and insulate them with hot
glue, as shown fourth in Figure 3.16. Screw the connector back together and you’re done! Connect

it to your power supply, plug in the power supply, and check the header pins for voltage. If you get

a positive voltage with the red lead on the red wire’s header and the black lead on the black wire’s
header, you got it right.
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The voltage regulators that come with the microcontrollers are easily fried by a brief short
circuit or reversed polarities. If this happens, putting in an external voltage regulator

will probably revive your microcontroller. Better yet, skip this drama and use an external
voltage regulator from the start.

7805 5-Volt Regulator

Figure 3.19
A 7805 5-volt voltage
regulator.

8-15V Input ' § 5V Output

[

Ground For Both

If you are using a lower-level chip (for example, a PIC) or if you are like us and don’t trust
the built-in regulators on the Stamp-like microcontrollers, then you will build a default
power supply circuit onto every board. The 7805 regulator is used to take a varying range
of voltage (from 8 to 15 volts DC) and convert it to 5 volts DC. It can supply almost 1000
milliamps of current (1 amp) at 5 volts, assuming the power supply that’s feeding it can
supply up to an amp as well. The pins of the regulator are numbered from left to right as
you look at the front of it (the side with the label), as shown in Figure 3.19. Pin 1 is the
input pin, which you connect to the 8 to 15 volts of the power supply. Pin 2 is the ground,
which you connect to the ground of the power supply and to the ground of your circuit.
(The metal top of the regulator is also a ground. This will be helpful later when you are
looking for a ground connection to touch with your multimeter probe.) Pin 3 is the output
pin. This outputs 5 volts. Connect this pin to the voltage side of your circuit.

Place a 7805 5-volt voltage regulator in the top three rows of the board with the front of
the regulator (the side with the label) facing to the left, as shown in Figure 3.20. This will
place the voltage regulator’s input pin in the top hole, its ground in the second hole, and
its output pin in the third hole. First, you’ll connect the output side of the regulator to the
long rows on the board. Run a red wire to connect the regulator’s third pin (the output pin)
to the 5V power strip(s) on your breadboard. Next, connect a black wire from the ground
(center) pin of the regulator to the ground strip(s) on your breadboard. On the input side
of the regulator, connect the black (ground) wire of your power connector (which you
soldered above) to the regulator’s ground (center) pin as well. The ground pin is shared by
both the input and output. Then connect the red (power) wire of your power connector to
the row holding pin 1 of the regulator (the input pin).

When you’re sure you've wired it right, plug the power connector into your DC power
supply, and connect it to the wall. Set your multimeter to read DC voltage, and put the
leads on the metal ends of the wires in the red and blue rows. If you wired it correctly,
you should read 5 volts. If you wired it incorrectly, your regulator probably overheated and
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produced a puff of smoke. It is normal for a voltage regulator to get a little hot if it operating
at the high end of its range. That is why it has that metal fin on top to dissipate the heat. If

you have the dreaded short circuit your regulator could heat up to the point where it burns
you when you touch it. Let it cool down, throw it out, and try again with another regulator.

Figure 3.20

A 7805 voltage
regulator powering
a stamp-like
microcontroller on a
breadboard.

ﬁ‘]@'@@lﬁ

Single Power Strip Board Double Power Strip Board

The long side rows will be used to connect many of the components in your circuit to
power or ground. From now on, we’ll refer to them as the power bus (the row connected to
5 volts) and the ground bus (the row connected to ground).

If you've done everything right, your microprocessor is now running. If it’s already got a
program on it (the BX-24 ships with a program on it already), you may see blinking LEDs. If
not, you have a bit more work to do to get the LED blinking.

Be Neat

Keeping your circuits neat will make debugging much easier. When possible, shorten the
leads on components so there is no bare metal sticking up from the breadboard. Make sure
the exposed parts of wires can’t lean against each other. This is the biggest source of short
circuits on a breadboard. Use consistent colors of wires when possible; for example, use
black for ground connections, red for power connections, yellow, white, or blue for data
connections, and so forth. Use cable ties to anchor your power connector (and any future
wire connecting to the outside world) to something stationary on your board. This strain
relief will make it less likely that your circuit will be disconnected accidentally when your
power cord inevitably gets tugged as you connect and disconnect your project. Figure 3.21
shows the right way and the wrong way to wire a board.

Once you've assembled this circuit on your board, keep it together; you’ll use it again in the
next chapter.
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Figure 3.21

Examples of a messy
board (top), and a neat
board (bottom). Strive
to make your board
look like the one on the
bottom. exposed me

tal

-

Y EES- - ower and ground
the same color

no exposed metal
” . . <.. ... .ires only as long

power lead
strain relieved
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The Microcontroller

“Hello World!” Is the Hard Part

Anybody who has learned how to use a couple of different computer systems or
programming languages will tell you that the hardest part is getting a computer to do
anything at all. It usually involves learning an arbitrary and proprietary development
environment where many obscure files have to be located in many obscure places.
After you've mastered the environment well enough to accomplish something

trivial, implementing the intricate particulars of your project is comparatively easy

and definitely more fun. In software, it’s traditional to prove your mastery of any
environment by getting your program to say “Hello World!” The “Hello World!” message
of the microcontroller is a blinking LED. Once you get the microcontroller to blink an
LED, it’s all downhill from there.

In the last chapter, you should have inserted your microcontroller into a breadboard

and applied power. You might even have a built-in program with a blinking LED. In

this chapter, you’ll walk through the basics of the microcontroller and its environment,
culminating in you running a program of your own to blink the LED. Most people find this
immensely satisfying. We’ll explain how to do this on a few different microprocessors. You
can skip the sections that don’t apply to your processor. We’ll do the same in subsequent
chapters as well.

Where Does the Microcontroller Fit In?

So far your basic circuit in Figure 4.1 doesn’t have a lot of possibilities for interaction. On
the input side you have a switch, and on the output side you have a light.

The interaction is like a one-line joke: you close the switch and the light goes on. There are
no surprises (assuming the light bulb is good). When you introduce a computer, in the form
of a microcontroller, you start to see some rich possibilities for interaction.
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Figure 4.1
The simple circuit.

Input
When you replace the load in your circuit with the microcontroller, as in Figure 4.2, you
could count how many times a person presses the switch.

Figure 4.2
The microcontroller
reading input.

Or you could have multiple switches and have the microcontroller consider them together
before it takes action, as would happen on a combination lock. Or you could have the same
switch do two different jobs, depending on the context, as happens all too often on the
interfaces to your personal electronics. Or maybe you are interested not only in whether a
person is pressing the button, but also for how long and how hard.

Output

When you replace the switch in your circuit with a microcontroller, you can automate
when the load is turned on according to commands in your software (see Figure 4.3).

Figure 4.3 |
The microcontroller N
controlling output.
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You can then turn on multiple devices in concert or in sequence. You can turn on a device
for a particular duration or turn it on by degrees. For example, you can turn on a whole
row of light bulbs all at once, or you can flash them on and off in a sequence, or you can
dim them individually or as a group.

Routing Inputs to Outputs

Best of all, you can cause a variety of different output actions to happen based on various
input actions. For example, you could have a burglar alarm switch that sends a signal to

the microcontroller when someone walks in the room. The microcontroller might then turn
on an alarm, call the police department on the telephone, and flash the lights. If that is too
easy, you can program it so the person has to dance around in a circle three times before the
microcontroller flashes the lights to the beat and calls the police. That’s not too boring at all.

Identifying the Pins of the Microcontroller

In your microcontroller’s documentation, you’ll find a diagram and chart describing the
different jobs that each pin does. Every component’s documentation will have a similar
diagram, known as the pin diagram. We refer to this diagram so often that we usually
photocopy it and put it on the wall. Every microcontroller will have pins for connecting
to power and ground, pins dedicated to programming the chip, and general input and
output (I/0) pins. Some microcontrollers will have additional special function pins, some
of which we discuss below. Depending on your microcontroller, your I/0O pins will have a
number of different possible functions. In software, you will set which task you want a pin
to do. The most basic functions are digital input and output. Almost all pins are capable
of digital I/0O. In addition, some pins are capable of analog input as well. The various
functions of each pin are marked on the pin diagram, and explained more fully in the rest
of the processor’s documentation.

NOTE

Stamp-like brands covered in this book are the NetMedia’s BasicX BX-24 chip,
Parallax’s BASIC Stamp 2, and Basic Micro’s Basic Atom Pro24. These follow the
layout of the original BASIC Stamp 2. We will also show examples using Microchip’s
PIC 18F452, which has an entirely different physical layout.

Figures 4.4 and 4.5 are simplified pin diagrams for a typical Stamp-like processor and for
the PIC 18F452.

On any chip with this basic form (two rows of pins, called a DIP package), the pin
numbering starts at the top-left corner and moves in a U shape around the chip. All of the
Stamp-like modules have 24 pins. The PICs have a varying number of pins; the 18F452 is
typical of those PICs that have 40 pins.

On the Stamp-like modules, the first four pins on the left are used for programming the chip,
the first four on the right are used for powering and resetting the chip, and the bottom 16
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A basic pin diagram for ?%%?)Regulator
the PIC 18F452. To Power adaptor +9—-15VDC
+5V To Power Adaptor ground
10KQ
MCLR | RB7
RAO/ANO | L RB6
RA1/AN1  _| L RB5
RA2/AN2  __| | RB4
RA3/AN3  _| | RB3
RA4 ] L RB2
RA5/AN4 | | RB1
REO/AN5 | L RBO
RE1/AN6 | . +5V
ND
RE2AN7  —  igrsso G
+5V | RD7
22pF GND ] L RD6
AMHz  CLKIN | RD5
] i -
| = CLKOUT | RD4
RCO __| L RC7/RX
22pF RC1 | RC6/TX
= RC2 _| | RC5
RC3 | | RC4
RDO ] L RD3
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pins are used for general I/O. The BASIC Stamp 2, the BX-24, and the Basic Atom Pro24 are
all alike in this layout. The I/O pins all function as digital inputs and outputs on all three
modules, though some of them have additional functions that differ from module to module.

On the PIC, the power and ground pins are near the center of the chip, and the I/0 pins
spread outward from the center. Some of the I/0O pins also function as programming pins.
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In addition, there are two pins, CLKIN and CLKOUT, for an external crystal that functions
as the PIC’s timing clock. On the Stamp-like modules, the clock is built into the module.

Lower-Level Microcontrollers: External Clock

Every microprocessor needs a regular voltage pulse by which to clock its operations. If
you are using a Stamp-like module, you can skip this section; your module has a clock
built into it. Typically, these clocks pulse several million times a second. One of the
inconveniences of using lower-level chips like the PIC is that you have to supply a separate
clock. You can use an external crystal for a clock or use a resistor/capacitor circuit that’s
built into the chip. The R/C circuit that’s built in is not very accurate, however, and we
don’t recommend it. We recommend using an external crystal instead.

A crystal is designed to pulse at a specific speed when given power. It has two pins, which
are interchangeable. When connected to the PIC’s CLKIN and CLKOUT pins, and connected
to ground through 22-pF capacitors, the crystal will vibrate at its given frequency and give
the PIC a clock. Figure 4.6 shows the clock circuit for the PIC.

Figure 4.6 22pF | wn
Clock circuit for PIC | 4MHz CLKIN |

18F452. 1 -

= .

CLKOUT .

22pF

Your First Microcontroller-Based Circuit

Before you program the microcontroller, you need to build your first output circuit. You'll
need to connect an LED to a pin of the microprocessor. You may already have it connected
because this is the example circuit we used in the previous chapter. We will visit this
circuit yet again in the section on digital output in Chapter 6, “The Big Four: Schematics,
Programs, and Transducers.” Just to review, connect a 220-ohm resistor to the same row
as the bottom-left pin of your microprocessor. Connect the other end to an empty row.
Connect the positive lead (usually the long lead) of an LED to that same row. Connect the
negative lead (usually the short lead) of the LED to the ground row. Figure 4.7 illustrates
what you should have wired.
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Figure 4.7

LED connected to pin
of the microcontroller
as a digital output.

Figure 4.8

Pin diagrams for the
BX-24, BASIC Stamp 2,
and Basic Atom Pro24. >

Getting Your Program to the Chip

2200

From microcontroller

R

ﬁ"_"'

O ===

NOTE

Make sure to note which pin you used for your LED circuit. You might encounter two
numbering systems for the pins. One set of numbers is for all the physical pins on
the chip. The system you really care about is the numbers used by software to refer to
the I/O pins. Each manufacturer labels the pins slightly differently for programming
purposes. Most start counting with the number 0, which takes some getting used to.
Make an “x” on Figure 4.8 next to the pin used in your circuit. On the BASIC Stamp
2, the I/O pins, which are physically pin numbers 5 through 20, if you count from
the top left of the module, are referred to as pins 0 through 15. On the BX-24, they're
labeled pins 5 through 20, the same as their physical numbers. On the Basic Atom
Pro24, they're labeled 0 through 15, or PO through P15.

5VDC Regulator 5VDC Regulator 5VDC Regulator

(7805) (7805) (7805)

To Power adapter +5-15VDC
To Power Adapter ground

To Power adapter +5-15VDC
To Power Adapter ground
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To Power Adapter ground
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ATN —
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P5 —]

P& —]

P7 —]

P8 —]
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GND
RES
+5V
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|— P10
— Pis
|— P17
|— P16
|— P15
|— P14

P13
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AX —]
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0—]
1
2]
3]
4
5 ]
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[ Fes
+5V
|— 15
|— 14
|— 13
— 12
— 11

— 10

T

PWR

AX —}
ATN —
GND —

Po —}

P —}

P2 —

P3 —

P4 ]

Ps ]

P6 —}

P7

Basic Atomm
Pro24

GND
[ e
+5V
}— P15
|— P14
|— P13
|— P12
— P11
|— P10
}— P9
P8

The microcontrollers that we’re discussing can be reprogrammed repeatedly. Not all
microprocessors are like this. Some are one-time programmable, meaning that you program
them once and they’re programmed for life. One-time programmable chips are much
cheaper, but are used for mass production after you have figured everything out, not for
individual projects or for developing new devices. The process for putting a program
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into a microcontroller will vary between brands, but there are two components that are
common to all of them: a hardware connection between the multimedia computer and

the microprocessor, and a suite of software programs on the multimedia computer for
programming and compiling your program and downloading it to the microprocessor.

The software suite will include a text editor for writing your program; a compiler, which
converts your text into a binary file containing instructions that the microprocessor and
read and interpret; and a downloader, which is used to transfer the binary file to the
microprocessor. Most environments will also include a debugger for sending messages

to and from your microprocessor while it’s running. Each time you transfer a program to
your chip, the previous program is erased from the chip’s memory and the new program
takes its place. The downloader starts the program running on the microprocessor once the
transfer is complete. Figure 4.9 lays out the steps for getting your program running on the
chip.

Figure 4.9 Downloading

Writing, compiling, &

. Editing Compiling Reprogramming Running
and downloading.

T O

Debugging

Transferring the program to the microprocessor is a one-way journey. It’s not possible to get
it back from the chip to the multimedia computer in human-readable form. Make sure you
keep track of the text files that you create on your multimedia computer because they will
be your only copy of your program.

NOTE

The software for programming all of the microprocessors we’re discussing exists for
Windows PCs only (though there is a Macintosh-based programming environment for
the BASIC Stamp 2). Once you've programmed the computer, you can communicate
with a Macintosh computer from your microcontroller, however. It is possible to

use VirtualPC to run for the programming software for all of these microcontrollers
on a Magc, but there are a number of technical difficulties to overcome to make that
happen. The programming environment does not require a very powerful computer,
so some Mac users prefer to just pick up an old PC from a junk store or eBay and use
that just for programming their microcontrollers.

Programming Stamp-Like Modules

For Stamp-like modules the editor, compiler, downloader, and debugger are combined
in one application, which is free to download from the manufacturer. They use a simple
programming language, BASIC (though the three Stamp-like modules we’re discussing use
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three different variants of BASIC). Once you’ve made the serial connector in Chapter 3,
connect it to the serial port on your PC with a normal serial cable.

NOTE

Make sure your serial cable is a standard one, not a “null modem” cable.

Stamp-Like Programming Hardware Connection

The first four pins of Stamp-like modules form a serial port that connects to the RS-232
serial port of your multimedia computer. Connect the serial connector from Chapter 3 to
these four pins, as shown in Figure 4.10.

Figure 4.10
Connecting the serial
cable to the Stamp-like
module.

The Stamp-like module connects via a serial cable to the serial port on your multimedia
computer. Look for a port on the back of your computer with a 9-pin male connector (DB9)
labeled 101010 1, not 101011. On very old machines, the connector has 25 pins. Nowadays
many machines (Mac and PC) are only equipped with a USB serial port. For those, you'll
have to get a USB-t0-RS-232 adapter.

Stamp-Like Programming Software Environments

In this section, we will talk about where to write this code; in the next chapter, we’ll
talk about what to write. If you bought only the chip itself, as we recommended, and not
the whole development environment, you will have to go to the manufacturer’s Web site
to download the programming software and the manual. See Appendix B for URLs of
the manufacturers of the modules we're discussing. The instructions that follow assume
you've installed the application and run it. You’ll write the same program on all three
environments. When it’s run, it will make an LED attached to pin 12 of the module (the
bottom-left pin) blink on and off every half second.
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Following is the text you’ll enter. We’ll explain it in more depth in Chapter 5,
“Programming.” This is just enough code to make the chip do something you can see. If
you're using the BASIC Stamp 2, you’ll be using the pBasic variant of BASIC. On the Basic
Atom Pro24, you’ll use mBasic, and on the BX-24, you’ll use BX BASIC.

( PBASIC ) Main:
High 7
Pause 50
Low 7
Pause 500
Goto main

BX-Basic Sub Main()

d

Do
Call putPin(12, 1)
Call delay(0.5)
Call putPin(12, 0)
Call delay(0.5)
Loop
End sub

Connect your module to the COM1 serial port of the PC via the serial connector and serial
cable, and give it power. Open the programming environment and you’re ready to begin.

In the BASIC Stamp programming environment, you type in a program, then choose the
version of the BASIC Stamp you’re using by clicking the BS-2 stamp mode icon on the
toolbar. Then choose the version of the programming language you’re using by clicking the
pBasic language version icon for 2.5 in the toolbar. Then click the Program button. Figure
4.11 shows the programming environment. The application then compiles your program
and sends it to the microcontroller. Disconnect your serial cable and the program will start
running. When you save your program, the BASIC Stamp application produces a single text
file containing your BASIC commands. This is also the file that gets downloaded to the
module. It’s compiled on the microprocessor itself as it runs.

Figure 4.11 /5 BRI Stomp - C:\Docment and Setbngs)i 1o x]
The BASIC Stamp o
programming ?i‘n_hij_ﬁ ol 5:" - BS-2 Stamp Mode Icon )
environment. FofSs D mMbQeR L8488 2 PBASIC 2.5 Language Version Icon
= 5] wekeaz |
=] HyDoumenis -] |
- ben shat i
i b appe

) et
-] e AE main:
) b o L
) 05 P € e
o ] chupwels ERZD ey
) coeist hpunsti =]
s L1
ARG b =1
[rosee =
[RARIE Starmg, Bl (= b= v b Bp g = | |4 ] il |
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The Basic Atom Pro environment is similar to the BASIC Stamp environment, except that
you don’t need to pick the version of the chip or the version of the programming language.
Figure 4.12 shows the Basic Atom Integrated Development Environment (IDE). To start

a new program, click the New icon on the toolbar or select New from the File menu, as
with most text editing environments. Once you’ve entered your code, click the Program
button and the program is compiled and downloaded. Disconnect your serial cable and the
program will start running. When you save your program, the Basic Atom Pro application
produces a text file containing your BASIC commands and a binary file (with a .bin
extension) containing the machine code that’s downloaded to the module.

Figure 4.12 R E
The Basic Atom Bl Gk Codmas Wew et Took Debaer Werkm
. O ¢ [
programiming = =
2 Bk bas | Program Debog | [aaes -
environment. 0] x|
pause
gota main
& o [ o] =l
:IJ Fam Memony |ree|Stack], 2007 hyies ﬂ
|Program Memory Used[Tekensl: 40 byles
|Pragram Memony Used[Librarg: 094 bytes
|Program Memory Used[Tolall: 934 byles
|Program Memory Free! INEN0 yles
| Mo Esrors Detected
| Pragraming... -
la] ] v
Lo = Duid  Deloug 3, Termina ), Termaelz 3, Termred} . Teminald "
For Help, press Fl Ln &, Cal B0 b

The application for the BasicX has two parts, a downloader/debugger window and an editor
window. The Editor window is shown in Figure 4.13. When you open the program only the
downloader/debugger window will appear. Click on the Open Editor icon to bring up the
Editor window. Once it’s open, click the New Project button to begin a new project. Give
the project and the module the same name, for simplicity’s sake. The environment will
automatically enter some text to begin with; select all and delete it, then enter your own
text. To run your program, click the Compile and Run button. The application will compile
and download your program to the module and run it. When you look in the directory
where you saved the program, you’ll see that for a single program the BX programming

Figure 4.13 A= S|
The BasicX ENBCTLR Giople’ dpios Bk trden il

. Db DB » §=
programming |

environment (editor
window only).

Sub Bain()
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envoronment creates several files grouped together as a project. They all start with the
same name, the name of the project, but have different file extensions. The file with the
.bas extension contains the text of your program, and the one with the .bxb extension is the
binary file that gets downloaded to the module.

Programming Lower-Level Chips

In order to program on the PIC or another lower-level processor, there’s more work to do
before you get the LED to blink. First, there are some extra components you need to add

to the circuit in order to get it to run. Second, there is an additional piece of hardware

you need in order to transfer the program to your chip. Third, there are several pieces of
software that you must install and configure in order to write, compile, and download your
program. Some of the software is free, and some of it is not.

As we mentioned before, the disadvantages of working with lower-level processors are
counterbalanced by their speed and cost. PICs cost anywhere from one-third to one-

tenth as much as the Stamp-like modules, so the expense that you suffer in buying the
development tools is offset by the fact that the chips are so cheap. We don’t recommend the
lower-level approach for the absolute beginner, but we include it here for those with some
electronics or programming background, as well as for those who want more after they’ve
worked with the mid-level modules.

If you're working with a PIC, you should already have added the external clock circuit to
your board as shown earlier in this chapter. You should also add a 10 kilohm (k ) resistor
to the MCLR pin of the processor and connect the other end of the resistor to ground. Now
you're ready to begin programming.

The Hardware Programmer

The biggest change from mid-level modules to lower-level chips is the addition of a
hardware programmer. This device connects to the parallel port or the serial port of your
PC and loads the program into the PIC. There are several models on the market. Some
require you to remove the PIC from its circuit and place it in the programmer. Others
connect directly to the PIC’s circuit board. They range in price from $7 to over $100. Our
examples use the EPIC Plus Programmer from microEngineering Labs. It costs about $60,
and connects to the parallel (printer) port of your PC. There’s also a serial version of this
programmer available for a bit more money. Check Appendix A for recommendations and
notes on other hardware programmers.

Lower-Level Programming Software Environments

As we mentioned previously, lower-level microprocessor programming requires three
different pieces of software: a text editor, a compiler, and a downloader. Some text editors are
specially designed for programming, have formatting features to make reading your program
easier, and include tools to automatically run the compiler and open the downloader.

Our examples in this chapter and following will use MicroCode Studio Lite as the editor,
PicBasic Pro as the compiler, and the EPIC Plus software as the downloader. You'll also need
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an additional compiler, cryptically named MPASMWIN, from Microchip. This is freeware,
and can be downloaded from http://www.microchip.com (there’s also a link to it from http:
/lwww.melabs.com). MPASMWIN takes the partially compiled code from PicBasic Pro and
assembles it into a final binary file for download to the PIC. Of these, only MicroCode Studio
is free (available from http://www.mecanique.co.uk). PicBasic Pro can be purchased from
microEngineering Labs. EPIC Plus software comes with the EPIC Plus Programmer.

We’ll assume in the following example that you've installed MicroCode Studio, PicBasic
Pro, and the EPIC Plus software already, and configured them. MicroEngineering Labs
distributes another editor, CoDesigner Lite, with PicBasic Pro, but you don’t have to use
it. If you install PicBasic Pro and the EPIC software first, then MicroCode Studio will
automatically search for them as has programmer and downloader when you install it.

You’ll build the same blinking LED example on the PIC that you built on the Stamp-like
processors. Using the circuit in Figure 4.14, attach a 220-ohm resistor to the bottom-left pin
of the PIC (pin 20, or RD1 on a PIC 18F452), then attach the resistor to an empty row of the
breadboard. Attach the long lead of the LED to the same row, and attach the short lead of
the LED to ground. What it will look like is shown in Figure 4.14.

Figure 4.14 2200
PIC 18F452 with an From microcontroller

LED and resistor on

Pin RD1.
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Following is the code you’ll enter. Notice that it’s very similar to the BASIC Stamp and
Basic Atom code. PicBasic Pro and mBasic, the Basic Atom BASIC, are both based on
BASIC Stamp’s BASIC, pBasic.

Main:
High portd.l
Pause 500
Low portd.l
Pause 500
Goto main
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Attach the EPIC Plus Programmer to the parallel port of the PC, and make sure it’s
powered. Open MicroCode studio, and enter the code above. Figure 4.15 shows the
MicroCode Studio editor. Click the Compile and Program button and MicroCode Studio
will call PicBasic Pro and MPASMWIN to compile the program. The compiler will produce
a number of files, all with the same name and different extensions, like the BasicX
software did for the BX-24. The file with the extension .bas contains your text and the file
with the extension .hex is the one that will be downloaded to the chip.

If MicroCode Studio can’t find MPASMWIN or the EPIC programming software, you might
have to configure it yourself. Click the View menu, then choose PicBasic Options. Select
the Assembler Tab, and check the Microchip MPASM check box. Then click the Find
Automatically button. MicroCode Studio should now be able to find the MPASMWIN
assembler. The procedure for configuring MicroCode Studio to find the EPIC programmer
is similar. Click the View Menu, then choose PicBasic Options. Select the Programmer Tab,

and add a new programmer. Select the MicroEngineering Labs EPIC programmer and you
should be all set.
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Once the compiling is done, MicroCode Studio will open the EPIC Plus software to prepare
for download. It’s up to you to complete the download.

First, attach the 40-pin ZIF adaptor to the EPIC Programmer like in Figure 4.16.

Figure 4.16
The EPIC Programmer.

Computer
rallel Port
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EPIC Programmer
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Next, insert the PIC into the socket with the top next to the lever. Press the lever down to
hold the PIC in the socket.

Figure 4.17 ..~ EPICWin - ...\pb_proj\blinkybli o ] B
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Figure 4.17 shows the main window of the EPIC Plus environment. Click on the View menu
of the EPIC software and choose Configuration. This menu (see Figure 4.18) allows you to

set various characteristics of the PIC, such as the type of clock crystal you are using, which
timers in the PIC are turned on or off, and so forth. For this example, set the clock to XT and
leave the rest alone. Then click the Program button and the software will download your
program to the PIC. Put the PIC back into its circuit, power it up, and your LED should blink.

Debugging

In programming or electronics, nothing ever works right the first time. Learning how

to program is really about learning how to debug. The first step is to come up with an

idea about what might not be working. Then, replace what you think isn’t working with
something that should work to see if that’s the problem. When troubleshooting, try to
change only one element of the system at a time. If the element that you changed was not
the problem, then put the original element back and try another. Being systematic like this
is the key not only to solving the problem, but also to knowing how you solved it once it
works again.

Here are some common sources of error in the examples above, and how to fix them.

P Is the circuit powered? Check to see that it’s got power and ground. Because
it’s necessary to unplug the circuit any time you make a change, this is the
most common source of error. Take a multimeter to the power and ground
pins of the chip to see that it’s getting 5 volts.

TEAM LING - LIve, Informative, Non-cost and cenuine !



The Microcontroller - Chapter 4 63

P Is the pin mentioned in the software the one used in the circuit? Look at
the pin diagram for your microcontroller to be sure your circuit and your
software are referring to the same pin.

P> Does the LED work? Disconnect the end of the resistor that’s attached to the
pin of the chip and connect it directly to 5 volts. If the LED doesn’t light up,
then try another LED.

P Is the resistor the right value? If the new LED doesn’t light up either, remove
the resistor from the circuit and check its value by setting your multimeter
to ohms and measuring it. If it’s not 220 ohms, get one that is.

P Is the circuit connected to the serial port correctly? If you have more than
one serial port on your computer, you may have attached the serial cable to
the wrong port. Check to see that you're in the right port.

P Is the software configured to use the right serial port? Each environment
has a menu item that allows you to set the serial port. In the BASIC Stamp
environment, select Port from the Directive menu. In the Basic Atom
environment, it’s on the General tab under Preferences in the Tools menu. In
the BasicX environment, it’s in the I/O Ports menu of the debugger window.
Choose Download Port from the I/0 Ports menu. In the EPIC Plus software,
select EPIC Port from the File menu. Be sure that the port selected is the one
that your serial cable or parallel cable is attached to.

P> Does another application have control of the serial port? If the programming
environment can’t open the serial port, perhaps another application has
control of it. If you have a PDA that syncs through the serial port, this might
be the problem. Disabling the PDA software or picking another port should
solve the problem.

When all else fails, question your most basic assumptions. The most persistent problems
usually hide in the areas about which you’re most confident. If you're sure the power is
good, check it. If you're sure the serial cable is connected, check it. If you're sure the chip
is in the circuit correctly, check it. The less you assume, the better you get at debugging.
You'll need this skill frequently in the chapters ahead, so get in the habit of being
systematic and questioning your assumptions now, in order to save you heartache later.

If you have managed to get the LED to blink, you should marvel at your new skills as
master of both bits and atoms. It is traditional at this point to do the hokey-pokey and turn
yourself around!
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Programming

Your microcontroller earns its keep by doing processing in software between its inputs
and its outputs. In the last chapter you saw how to put your software program onto the
microcontroller. Now you have to make the program specific to your project. This chapter
is written to accommodate beginning programmers. You will learn about programming
languages in general and about programming on a microcontroller in particular. If you are
an experienced programmer, you can safely skip this chapter and pick the syntax of your
microcontroller’s language from examples in other chapters.

The Good News

If you don’t have any experience with computer programming, you’ll be glad to know

that programming for microcontrollers is much simpler than programming for desktop
computers. It will also relieve you to know that for any kind of programming there are only
four main tools that programmers use: loops, if statements, variables, and routines. Most
everything else you do when programming is a combination of these tools. In fact, most

of the things you’ll want to do will be small variations of the programs you’ll see here.
Until you get the hang of writing your own programs, you should copy, paste, and use the
routines in the following chapters. Just as it’s easier to learn a foreign language when you
need it to get by in a foreign country, you’ll find programming concepts easier to learn
when you need them to realize your project.

Flow Control: How a Computer “Reads” a Program

The microcontroller “reads” your program in the order that you write it, starting from the
top and working its way down, executing instructions line by line until there are no more
instructions to execute. There are certain words that it knows innately (sometimes called
keywords or reserved words), and other words that you define for it. Keywords, like Goto or
Gosub, tell the computer to skip to a particular place in the program. When it gets there, it
keeps reading down the program until it gets an instruction to return to its previous place
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in the program or to skip to somewhere else in the program. When the computer gets to the
end of a program, it simply stops.!

Programs are organized much like everyday writing. They’re broken into sensible sections
so you can understand them one piece at a time. While everyday writing is broken into
sentences and paragraphs, programs are broken into statements and blocks. We’ll give
names to certain blocks of code so that we can come back to them frequently. These blocks
are called routines.

NOTE

We will give examples in four different forms of the BASIC language. At first glance
this makes the code samples seem more complicated than they are. It will all look
simpler after you get used to skipping directly to the example in your language.
Because the differences in these languages are generally syntactical and superficial,
our explanations in the main text will apply to all four. This general approach will
help you in the future, when newer, faster, cheaper competitors to these processors
are released. Similarly, when you look on the Web for examples you will be able to
translate examples from other brands of microcontrollers to work for yours.

BX-Basic is different enough from the others that we will occasionally have to point
out exceptions, which you can ignore if you're not using the BX-24.

The following table shows you the languages we're using and how they’re related to
each other and to other forms of BASIC.

Microcontroller BASICs

MICROCONTROLLER LANGUAGE RELATIVES

Basic Stamp 2 PBASIC PBASIC (the original)
Basic Atom MBasic PBASIC

PIC PicBasic Pro PBASIC

Bx24 BX-Basic Visual Basic

Loops

Many of your programs will only have one block of code, called the main routine. Usually
you don’t want a program to stop when it reaches the end of the main routine. You want it
to keep going over and over until you turn it off. To keep the program going, you put in a
loop. You tell it, “When you have reached the end of your routine, go back to the beginning
and do it all again.” The main loop is the heartbeat of your program. It is also called the
event loop.

1 This easy-to-follow code, usually contained within a single file, is one reason why microcontrollers are an excellent
platform for learning programming. Object-oriented languages and languages with many separate event handlers tend
to decentralize your code into many different places. This is great for complicated projects, but it makes program flow a
little hard to follow for first-time programmers.
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Here are examples of a main loop in all of our versions of Basic:

PBASIC Main:
Statementl
MBasic Statement?
Goto main

PicBasic
Pro

[ E0E

BX-Basic)  Sub main()
Do
Statementl
Statement?2
Loop
End sub

In PBASIC, MBasic, and PicBasic Pro, you create a routine just by labeling it. Any word
that the programming environment doesn’t already know can be used as a label. Just type it
in your program, put a colon after it, and you’ve labeled a routine. A label does not actually
do anything except give the routine a name. Goto is a command (one of the keywords) that
sends the flow of the program to a label. In the example above, Statementl and Statement?
would happen over and over and over again for as long as your microcontroller is running.
Your program could easily outlive you as long as the microcontroller has power.

In BX-Basic, you do things a little differently. Every routine starts with the keyword Sub
followed by its name and a pair of parentheses (we’ll get to those later), and ends with the
statement End sub. Loops start with the keyword Do and end with the keyword Loop.

If Statements

If statements, also called conditional statements, are used to make decisions based on
various conditions that may occur during the running of a program. If a particular
condition is true, then the computer will execute the statements that follow the conditional
statement. If not, then it will skip those statements.

The most common form of the if statement looks like this:

( PBASIC ) If In6 =1 then
Statementl
MBasic Endif
Statement?2

PicBasic
Pro
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(BX-Basic) If getPin(6) = 1 then

Statementl
End if
Statement?

In the example above, you are testing an input pin of the microcontroller (we will talk
more about how to do that later). If the sensor attached to that pin is activated, then
Statementl will get executed. If not, then the computer will skip Statementl and go on to
execute Statement2 and anything else that follows it.

An if statement starts with the keyword if, followed by a condition that it has to evaluate
(In6 = 1, in the example above), followed by the keyword then. Any statements that you
want to happen if the condition is true come after that, followed by the statement End if.
Note that in PBASIC, MBasic, and PicBasic Pro, end if gets squashed together into one
keyword, endif. This isn’t the case in BX-Basic.

Before version 2.5, PBASIC had a less convenient form for its if statement. There was no endif.
You had to put the commands you wanted to happen into a routine and point to the routine
from the if statement. The new form allows you to put the commands you want to happen
right under the if statement. The new way is much better. You might see the old style used in
older examples and application notes on the Web. All of our examples are written in PBASIC
2.5, so you should always insert the following line at the beginning of your programs:

"{$PBASIC 2.5]

Variables

Variability of computer memory is at the heart of what makes computational media
different from traditional media. Variables are places in computer memory for storing or
changing information. We use variables to keep records for our program, such as whether
the user has pushed a button or not, how many times they’ve pushed the button, how many
times the computer has flashed a light, how much time has passed since the last button
push, and so forth.

Think of computer memory as a bunch of coffee cups that you can put labels onto the
outside and store things on the inside. Variables allow you to put your own names on
the outside of the coffee cup and put things you want to remember inside of it. Your if
statements and loops can then find the coffee cups by name and take different actions,
depending on what they find inside. The real power comes not from the fact that you can
place things in the cup, but that you can replace them or “vary” them easily. That’s why
they are called variables and not memorables.

Before you use a variable in BASIC, you need to give it a name. This is generally done at the
very beginning of your program or at the beginning of a routine. This is called declaring
the variable.

Use a name that describes what you’re using the variable to remember because it will make
your code much more readable. We often add “Var” to the ends of our variable names as
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well so they’re easy to distinguish from reserved words when reading the code. You can
use any name you want for your variable as long as it does not start with a number, has no
spaces, and isn’t a keyword. When you try to run your program, the compiler will let you
know if your variable name isn’t allowed.

To store a value in a variable, you put the name of the variable on the left side of an
equation and the value you want to remember on the right, like so:

DateVar = 12
ticketValueVar = 250
FareVar = 125

In higher-level languages, like Lingo in Macromedia Director MX or ActionScript in
Macromedia Flash MX, you can put all kinds of information into your variables: strings of
text, integers, fractional numbers, and more. The type of data you will store in that variable
will automatically be interpreted from the context in which you use the variable, and

the variable will be given more space in memory dynamically on an as-needed basis. In
contrast, microcontroller operating systems are a little more bare bones and memory space
is a little tighter. As a result, when you declare your variables, you also have to specify how
to interpret the data you plan to store and how much storage space you need. Variables are
declared in your program like this:

PBASIC SensorVar var byte
TicketVar var byte
MBasic BiggerVar var word

PicBasic
Pro

sa[qeLeA

| e

BX-Basic ) Dim sensorVar as byte
Dim ticketVar as byte
Dim biggerVar as integer

The size of your variable and the way it’s interpreted is called the data type of the variable,
and it’s largely determined by how big a number you need to store. For example, if you
plan to put one of only two values (0 or 1) into your variable, it will fit in the smallest unit
of memory space, called a bit. A number between 0 and 255 will require 8 bits of memory,
which is called a byte. If you imagine each of the 8 bits in a byte as a switch, like the ones
in Figure 5.1, then you can imagine that the numbers you can store in the byte depend on
which way the switches are set.

Figure 5.1 5
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In one direction each switch holds a 0, and in the other it holds a 1. With 8 switches, you
have 23, or 256 possible combinations of switch settings. That’s how you can fit numbers
between 0 and 255 in a byte.

You’'ll need even more space if the ranges of values you are storing need to be interpreted
as fractions or with negative numbers. Beginners’ programs rarely run short on memory
space?, so when in doubt, use big data types. It’s important that you understand types of
variables so that you're able to use them with the microcontroller’s built-in functions,
which we will discuss below. Often, you’ll be supplying variables as parameters for these
built-in functions, or having them return information by placing it in variables. You have
to match the variable types that you use to those that the built-in functions expect. For
example, the rctime function on the Basic Stamp expects a word-sized variable, and the
Pulseout() function on the BX expects to be supplied with a type called a single.’ The type
of variable expected by a function is usually the first item specified in the documentation
for a given function. Sometimes you’ll need to use the same variable with two functions
that have conflicting types, in which case you’ll have to convert the variable to another
type using a type-conversion function.

Various forms of BASIC use different data types and different names for the same types.
Listed below are the types for each language, how much space they take in memory, and
what the range of possible values are.

PBasic
Type NUMBER OF BiTs RANGE OF VALUES
Bit 1 lor0
Nib 4 0to 15
Byte 8 0 to 255
Word 16 0 to 65535
MBasic
Type NUMBER OF BiTs RANGE OF VALUES
Bit 1 lor0
Nib 4 0to 15
Byte 8 0 to 255
SByte 8 —127 to +128
Word 16 0 to 65535
SWord 16 —-32,767 to +32,768

2 For example, BX-24 has room for 400 byte-sized variables, so it will be a while before you run out.
3 A single is a single-precision floating point number, meaning that it’s got a fractional part, and the fractional part can be
up to six places after the decimal point. The decimal point “floats” in the number.
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PicBasic Pro
TypPE NUMBER OF BITS RANGE OF VALUES
Bit 1 1or0
Byte 8 0 to 255
Word 16 0 to 65535
BX-Basic
Type NUMBER OF BITs RANGE OF VALUES
Boolean 8 True or false
Byte 8 0 to 255
Integer 16 —32,768 to 32,767
Long 32 -2,147,483,648 to 2,147,483,647
Single 32 —3.402823E+38 to 3.402823E+38
String Varies 0 to 64 bytes

Not all of the microcontrollers we're showing allow you to use negative numbers or
fractional numbers. You might think about whether you need this when choosing one.
Those that can store negative numbers use one of the bits to store the sign of the number.
In MBasic, for example, they refer to the data types that can store negative numbers

as sWord and sByte, short for “signed word” and “signed byte.” BX-Basic is the only
environment we’re discussing that can store fractional numbers in its single type.

Here’s an example routine using variables:

PBASIC

MBasic

PicBasic
Pro

A0

ticketsSubmitted var byte
ticketSensor var byte

main:

If (ticketSensor = 1) then
ticketsSubmitted = ticketsSubmitted + 1

Endif

If (ticketsSubmitted = 3) then

Gosub OpenGate
TicketsSubmitted = 0
Endif
Goto main

BX-Basic

g

Dim ticketsSubmitted as byte
Dim ticketSensor as byte

Sub main()
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Do
If (ticketSensor = 1) then
ticketsSubmitted = ticketsSubmitted + 1
End If
If (ticketsSubmitted = 3) then
Call OpenGate()
TicketsSubmitted = 0
End if
Loop
End sub

In this example, you need three tickets before you can pass through the gate. You'll use a
variable called ticketSensor to keep track of the sensor that counts tickets, and a variable
called ticketsSubmitted to keep track of how many tickets have been submitted. Notice you
must add 1 to what was already in ticketsSubmitted (ticketsSubmitted = ticketsSubmitted + 1),
and you have to reset ticketsSumitted to 0 after you open the gate. You could make the cost
of the train vary by making the number of tickets required, fixed in the example at 3, into
another variable.

Built-In Routines: Subroutines and Functions

In any programming language, there are a number of built-in routines for accomplishing
the most common tasks. The number and variety of these built-in routines is a major
selling point for a microcontroller’s language. For example, all microcontrollers will allow
you to sense the state of an input pin or set the state of an output pin. In BX-Basic, there
are routines for this: putPin() and getPin(). In pBasic, MBasic, and PicBasic Pro, there are
equivalent routines. Most routines will need some additional parameters that follow the
name of the routine, separated by commas. For example, if you wanted to output voltage on
pin 6, you would call putPin(), giving the pin number and the desired state as parameters.

PBASIC high 6

MBasic

PicBasic high portb.0
Pro

BX-Basic ) call putPin(6, 1)

| 1] B

The above would set the desired pin to 5 volts. The following code would set it to 0 volts.
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PBASIC Tow 6

MBasic

PicBasic ) 1ow portb.0
Pro

BX-Basic) call putPin(6, 0)

| 1] B

Notice on the BX-Basic you use the word call before the name of any routine.

CONSTANTS

In addition to variables, every programming language also includes constants, which are simply
variables that don’t vary once the program starts running. Use them to label numbers that get used
repeatedly within your program. You can make changes to all the places where the constant is used
by making a change in just one place: where you defined the constant. This makes your code more
reusable across different applications. For example, in Chapter 6, “The Big Four Schematics, Programs,
and Transducers,” you’ll see an example program that runs a servo motor. Servo motors have a
minimum and maximum pulsewidth that doesn’t change, although each servo brand’s minimum and
maximum might be somewhat different. When you buy a different brand of servo, you make these
values constants, so you only have to change them in one place, rather than change every occurrence

in the program.

Because constants don’t change, you set their values when you declare them, all in one step at
the beginning of the program. In PBASIC, MBasic, and PicBasic Pro, constants are declared at the

beginning of your program, like so:
MinPulse con 100

Then you can refer to them in the program just as you do variables, like so:
PulseWidth = minPulse + angleVar

In BX-Basic, you also have to declare the type of the constant, like so:
Const minPulse as single = 0.001

You don’t have to use constants in your programs, but they’re handy to know about, and you will

encounter them in other people’s programs.
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Routines or functions that just take action without giving back any information are
sometimes called commands. If the routine returns a value, it’s called a function.

If you wanted to get the state of pin 5 and store it in a byte variable named pinStatevar, you
would write:

PBASIC input 5
pinStateVar = inb
MBasic

PicBasic input portb.1
Pro pinStateVar = portb.1

| 1] B

BX-Basic pinStateVar = getPin(5)

NOTE

In pBasic, MBasic, and PicBasic Pro, you have to declare the desired pin as an input
first before you can get its state. That’s what the input command does above.

The most common way of getting a value back from a function is by setting a variable equal
to the function, as you saw in the example above (pinStateVar = getPin(5)). You don’t always
need to use a function to get information back from the microcontroller. For example, in
the PBASIC and MBasic examples above, in5 is not really a function but a built-in variable
that’s always equal to the input state of pin 5.

Some functions use yet another way to get values into your variables. You provide the
variable that you want to receive the value as an input to the function. For instance, in the
examples below, the rctime command will store its results in a variable called sensorvVar.

PBASIC sensorVar var word
rctime 5, 1, sensorVar
MBasic

PicBasic | sensorVar var word
Pro rctime portb.1, 1, sensorVar

BX-Basic dim sensorVar as integer
sensorVar = Rctime(5,1)

| 1] 0

Every microcontroller has a large number of commands, and the section of your
microcontroller’s manual that contains the command library will be the section you use
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most frequently. Look in the manual for the command that you have already used in

Chapter 4, to make your LED blink. Browse through some of the others to get a sense of what
your microcontroller is capable of. After you figure out what the routine does, pay special
attention to the parameters needed and the data types of those parameters. If it’s a function
(that is, if it returns a value), the data type of the value it returns will be listed as well.
Declare your variable to match the data types of the parameters that the routine is expecting.

Homemade Routines

Sometimes you’ll find a particular combination of code that you use over and over. Instead
of writing out the same combination of lines in several places in your program, you can
write it once in a routine and call that routine from those several places. The routine is
then referred to as a subroutine. This makes your code much better organized and easier to
modify. It’s possible that your microcontroller program will only be a few lines long and
will not require much organization or maintenance, and thus no subroutines. Nevertheless,
it’s common to have at least one or two subroutines, even in the simplest program.

Like variables, you can name your routines anything that doesn’t start with a number and
doesn’t contain spaces. However, as with variables, it’s wise to give your subroutines names
that describe what they do. You've already written one routine, called main, or sub main().

In pBasic, MBasic, and PicBasic Pro, a routine is delimited by a label name and a colon.

To call a subroutine, you use the keyword gosub followed by the label of the subroutine.
Subroutines end with the keyword return. When the processor reaches the return keyword,
it returns to the line after the gosub command that called the subroutine.

For example, suppose you are developing a very polite program. It should have a subroutine
to thank people:

( PBASIC ) Main:
If (theySneezeOnYou) then
gosub myThankYouRoutine
EndIf
If (theyKickYou) then
Pro gosub myThankYouRoutine
Endif

If (burnDownYourHouse) then
gosub myThankYouRoutine
endif
Goto main

MyThankYouRoutine:
High 0 'turn on the thank you light
Pause 1000
Low 0 'turn off the thank you light
Pause 1000

Return
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As we mentioned before, in BX-Basic, a routine is delimited by the word sub and the name
of your routine at the beginning and the words end sub at the end. When you want the code
inside a routine to happen, you “call” the routine, just as with built-in routines.

(BX-Basic)  Sub main()

Do
If (theySneezeOnYou) then
Call myThankYouRoutine ()
End If
If (theyKickYou) then
Call myThankYouRoutine ()
End if
If (burnDownYourHouse) then
Call myThankYouRoutine ()
end if
Loop
End sub

Sub myThankYouRoutine ()
Call PutPin(5,1) 'turn on the thank you light
Call Delay (1.0)
Call PutPin(5,0) 'turn off the thank you light
Call Delay (1.0)

End sub

No matter where in the main routine you call MyThankYouRoutine from, it always executes the
same code and then returns to the line following the one that called it. The big win here

is that if you ever want to change the action for a thank you, you only have to change it in
one well-labeled place.

Advanced Loops: While-Wend and For-Next

So far, you've seen only one type of loop, one that runs forever. This kind of loop is
called an infinite loop, or an event loop. Anything that the microcontroller must listen for
constantly (for example, input from a button push) should be in the main loop. Likewise,
anything that the microcontroller must constantly control (for example, the state of a
blinking LED) must also be in that loop.

PBASIC main:
' stuff to do over and over
MBasic Goto main

PicBasic
Pro

gl
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(BX-Basic)  Sub main()

Do
' Stuff to do over and over
Loop

End sub

In a simple program, there is a good chance this will be the only loop you need. However,
there are some shorter-term loops, like the for-next, while-wend, and do-while loops that
can really make coding easier.

While-Wend or Do-While

Sometimes you’ll want the duration of the loop determined by some condition. For
instance, you may want something to happen while a button is held down. You can then
use a while-wend or do-while loop to repeat a series of actions while the pin connected to
that switch is getting 5 volts (logic true), returning a true value. Here’s an example:

( MBasic ) Input 5

While in5 = 0
High 1
Pause 250
Low 1
Pause 250

wend

PicBasic Input portb.5
Pro

While portb.5= 0
High portb.0
Pause 250
Low portb.0
Pause 250

wend

(BX-Basic) Do while getPin(5) = 0

Call PutPin(6,1)

Call delay(0.25)

Call putPin(6,0)

Call delay(0.25)
Loop

If the while statement is not true, the program jumps to the next line after the loop. If there’s
nothing after the loop, the program stops.
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NOTE

PBASIC doesn’t have the while-wend structure. The alternative is to use a pair of if-
then statements and a label, like this:

( PBASIC ) Input 5

WendLabel:
if in5 = 0 then
High 1
Pause 250
Low 1
Pause 250
Endif
If in5 = 0 then wendLabel

For-Next

The for-next loop is used when you want to do something a specific number of times
and then move on. For example, you have sixteen possible output pins on the Stamp-like
controllers. Say you had an LED attached to each one of them, as in the example in
Chapter 4. If you wanted to light each LED in sequence, with a pause between each one,
you could write a line of code for each one, like this:

PBASIC High 0

Pause 1000

MBasic High 1
Pause 1000
High 2
Pause 1000

e

Etc.

d

BX-Basic ) Call putPin(5, 1)
Call delay(1.0)
Call putPin(6, 1)
Call delay(1.0)
Call putPin(7, 1)
Call delay(1.0)

This is okay for three lights, but if you have 16, your code gets ugly. Instead, you could
count from the lowest pin to the highest pin and use a variable to hold the number of the
current pin. A for-next loop is a special loop for doing this kind of counting. The syntax of
a for-next loop is the same in all forms of Basic we're discussing. It looks like this:

TEAM LING - LIve, Informative, Non-cost and cenuine !



Programming - Chapter 5

' declare yourVariable and its data type at the beginning of the program

For yourVariable = intialNumber to limitNumber
Statement 1
Statement 2

Next

79

PBASIC

MBasic

counterVar var byte

For counterVar = 0 to 15
High counterVar
Pause 1000

Next

PicBasic
Pro

i e

' PicBasic Pro doesn't let you address the pin names as variables
' in a for-next loop, so you need to use a Tittle trickery.
in this example, you're using the DECODE function (DCD)
' to turn on the 8 pins of PORTB (RBO through RB7).
For the details of DCD, see the PicBasic Pro manual.
counterVar var byte
' make all the pins of PORTB outputs:
TRISB = %000000000
For counterVar = 0 to 7
PORTB = DCD counterVar
Pause 1000
Next

( BX-Basic )

When the processor encounters the For line, it sets the variable that you supply (in this
case counterVar) equal to its initial number (in this case 0) and then starts executing the
statements in the body of the loop. When it encounters the Next keyword, it adds 1 to the

Dim counterVar as byte

For counterVar = 0 to 15
' add 5 to the counter, because pin numbers start with 5:
Call putPin(counterVar + 5, 1)
Call delay(1.0)

Next

variable and goes back up to the For line. It’s as if there’s an invisible line saying “countervar
= counterVar + 1” at the bottom of the loop. If countervar is less than or equal to TimitNumber

(in this case 15), it executes the statements again. If countervar is greater than limitNumber,

it skips to the line after the Next line and continues the program from there. Countervar is a
variable, so it must be declared before you use it in a for-next loop.
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NOTE

In BX-Basic, you must declare any variables that you use for loop counters inside the
subroutine that contains the loop.

This takes much less typing for the same effect! We use for-next loops frequently in our
code because they’re a convenient way to check or change the state of several things that
follow each other in a sequence.

Pseudocode

Following the code here is fairly easy, but facing a blank screen before writing your own

can be daunting. It usually helps to use pseudocode to ease the transition from your idea to
your code. First, break down what you want the computer to do into steps described in plain
language. This is called an algorithm. It helps to imagine your numbers as physical objects
that you are moving around like marbles between the coffee cups that are your variables®.
Next, write this plain language description in a more formal style called pseudocode.
Pseudocode restates the steps you described in plain language, using the structure of a
program, but not the actual words of the particular programming language. Once you get
used to the flow of programming, your plain language description is almost identical to
your pseudocode.

Sometimes the plain language will tip you off to the best programming tool. Whenever you
hear yourself saying the words “each,” “every,” “any,” or “always,” you’ll probably need a
loop. If statements are easily identified because the same word, “if,” or sometimes “when,”
shows up in plain language descriptions. The words “store,” “record,” “remember,” or
“keep track of” might tip you off that you need a variable. The truth is that variables can
be a little more difficult to identify. Work backwards. After you have your loops and if
statements, look inside the loops for quantities that will vary, taking these as opportunities
to use variables. It doesn’t hurt to cheat and try to work in the words “if” “for each,” and
“vary” in your plain language description. Following is an example.

Plain language:

Every time a passenger goes through the turnstile of a subway train, they have to
slide their fare card through the slot. If they have enough money on their card,
the amount on their card is decreased and the turnstile turns.

Pseudocode:

Check for passenger:
Read card in slot
If the amount on card is greater than the fare, then

Subtract the fare from what's on the card

4. Physical computing is a nice pedagogical tool for teaching general programming concepts because it naturally causes
people to imagine the program’s tasks in physical terms.
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Blink the "GO" light three times
Open the turnstile so they can go thorough
Go back to check for passenger again

You can see from this example that you have a clear loop (continually check for
passengers), a sensor-reading function (read card in slot) and an if statement (if the amount
on the card is enough to pay for the fare). You could use a variable to keep track of the fare
so you can change it, perhaps making it higher during rush hour. You would use another
variable to keep track of the amount the customer has on the card. You could use a for-next
loop to make the “GO” light blink. The command to open the turnstile might take several
steps, which you could put into separate routine so that you could call it elsewhere in the
program (for example, if a station manager needed to manually open the gate).

After you have the general plan of attack in pseudocode, it’s time to start writing actual
code for your particular microcontroller. In some cases, you may find that your pseudocode
is replaced with specific commands for the microcontroller, line for line. In other cases,
you will need to translate a particular intention in your pseudocode into a series of
statements in actual code.

In terms of the timing of your program, it helps to remember that when something happens
is determined by where it is placed in the code. For instance, things that you want to
happen once at the start of the program should be placed before the main loop. Things that
you want to happen repeatedly should be placed within the main loop or in a subroutine
called from the main loop. Things that you want to sometimes happen should be placed
inside if statements within your main loop.

Don'’t try to be clever or elegant at the beginning. You may have a long page of commands
or if statements that could be reduced to a single statement with a variable or a repeat loop.
Do it the long way first to understand what you’re doing, then look for an opportunity

to simplify it with a well-placed variable or repeat loop. Because programs on the
microcontroller are often short and simple by nature, you may not need to optimize them.

Comments

Theoretically, BASIC code is supposed to be close enough to everyday language to be read by
anyone. In practice, it isn’t. Often, you will want to place some plain language comments in
your code to note what a particular block of code is doing, or to note for yourself where you
still need to add a routine. You can do this by starting your comments with a single quote.
BASIC considers anything after a single quote on a given line to be a comment and ignores it.

Commenting is a useful way to think out loud and to take notes as you program. For example:

' This Tine is a comment. The next Tline starts the main Toop:

Do
If ticketValueVar > 0 then ' checks the user's ticket value
Call takeFare()
End if
Loop

TEAM LING - LIve, Informative, Non-cost and cenuine !

SjUWILLIOD)



82 Part | - The Basics

Comments are also useful for isolating parts of your program for debugging. Often, you
will disable all but one part of your code to be sure you have that part just right before
reintegrating it with the rest. Commenting out lines is a way to store code that may not be
necessary, but might be useful in the future.

Comment early and often. This is particularly important if other people will be reading
your code, but even if you are working alone, you’ll be surprised how quickly you forget
what you're doing in some parts of your BASIC code.

Debugging

Pseudocode helps you form a plan for your program, but it seldom survives intact for very
long when you actually try to run it. Your final programs seldom follow the exact logic of
your pseudocode. You will spend much of your time finding out why a plan that makes
perfect sense to you does not make sense to the microcontroller. You start by forming a
hypothesis about where the misunderstanding might be. Avoid hypotheses that are out of
your control, such as looking for bugs in the microcontroller compiler.

The most common problem is that it’s sometimes difficult to adopt the literal thinking
style of a computer. To help you eavesdrop on your microcontroller’s thinking, most
programming languages have a debug command. This command causes the processor to
send a message to be printed out in a window of the programming environment, intended
purely for the programmer’s eyes.

The most basic thing you’ll use the debug command for is to see if a particular line of
code is being executed. Once your program has a few if statements, for-next loops, and
subroutines, you may lose track of how the program flows. Place a debug statement right
before or after a line that does not seem to be working. If the line is being executed, the
debug statement will print a message to the screen for you. If it’s not getting to the line of
code in question, you’ll get no message.

The debug command can also be used to find out the value of a given variable at a given
time. For example, say your microcontroller is storing sensor readings into a variable, and
you want to see the range of values that comes from the sensor. You could place a debug
statement after the sensor is read, to see the value of the sensor as you change the physical
conditions around the sensor. Or maybe you have a for-next loop that is repeating five

times when you want it to repeat 10 times. You can have the microcontroller report back the
value of the loop counter variable so that you can see when it stops corresponding to your
expectations. All the messages sent back to the computer are formatted as text strings, so you
may have to convert some variables from numeric types into text strings to see their values.

These various forms of BASIC all have a debug command with a slightly different format to each:

( PBASIC ) Debug "hello world", 10, 13

Debug "start of routine", 10, 13
' don't forget to declare your variables first!
Debug "fareVar = ", DEC fareVar, 10, 13
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NOTE

Sometimes you may find that your program on the BS-2 doesn’t run when you keep
your programming cable connected. This is because it’s in debug mode. Either add a
debug statement and recompile or remove the programming cable and your program
will work.

Debug ["hello world", 10, 13]

Debug ["start of routine", 10, 13]

' don't forget to declare your variables first!
Debug ["fareVar = ", DEC fareVar, 10, 13]

NOTE

To see debug statements in MBasic, you have to use debug mode. To do this, click the
Debug button on the toolbar when you’ve written your code. This will open debug
mode. Then choose Run from the debugger menu and your code will run, showing you
the debug messages in the debug pane at the bottom of the screen. When you’re done
debugging, program your chip by clicking the Program button on the toolbar, then
disconnect your programming cable from the breadboard and the program will run.

PicBasic
Pro

' in PicBasic Pro, you need these lines at the top of your program

' to set the pin that you're debugging on and the baud rate at which
' to send debug messages:

INCLUDE "modedefs.bas"

DEFINE DEBUG_REG PORTC

DEFINE DEBUG_BIT 6

DEFINE DEBUG_BAUD 9600

DEFINE DEBUG_MODE 1

' these are the actual debug statements:
Debug "hello world", 10, 13

Debug "beginning of main routine", 10, 13

' don't forget to declare your variables first!
Debug "fareVar = ", DEC fareVar, 10, 13

( BX-Basic )

Debug.print "Hello world"
Debug.print "Start of routine"
' don't forget to declare your variables first!

Debug.print "fareVar = " ; cstr(fareVar)
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To print two items on the same line in pBasic, MBasic, and PicBasic Pro, separate them
with a comma. The DEC in front of fareVar tells the computer to print out farevar as a
decimal number for you to read. The numbers 10 and 13 are special codes that tell the
computer to move the cursor down a line. They act like the line feed and carriage return on
an old typewriter.

In BX-Basic, separate items on the same line with a semicolon. The line feed and carriage
return codes aren’t needed in BX-Basic. The cstr() function is similar to the DEC function in
the other BASIC variants; it converts the variable fareVar into a decimal number for you to read.

Debug statements are useful when you’re not sure where the program flow is going. Make
sure to comment them out once your program is running properly because they slow the
microcontroller down.

Good Debugging Habits

Besides liberal use of debug statements (which you should remove once your code works),
there are a few general guidelines that make debugging go faster:

P Keep your programs small. It’s often easier to prove a device works by
writing a one- or two-line program than it is to add those one or two lines
to an existing program. Even when you build complex programs, keep these
short programs around for retesting when things go wrong. It’s easy to
temporarily replace a big program in a microcontroller with a small one that
proves one thing, and it saves you loads of time.

P Save many versions. Whenever you make changes, save the program as a
new version. It’s easier to find your changes if you have a record of your
changes. Add a comment at the top of each version of a program explaining
the changes in that version.

P> Know every line. If your program gets too complex and you’re not sure how
it works, go through it line by line and make comments on what you think
happens. This will force you to make sense of every line of your program,
and often leads to an epiphany in which you realize that one particular line
or routine is the problem.

P> Look at all of your variables. Try debugging all of your variable values, not
just the one that you think is giving you problems. Sometimes the problem
is not where you think it is, and seeing all of your variables can sometimes
reveal where the problem really is.
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DEBUGGING CONNECTIONS FOR THE PIC
In PicBasic Pro, you must define the I/O port, pin number, and the baud rate that you plan to send debug
messages on at the top of your program. The DEFINE statements in the previous code example set these

properties. You also need to connect a serial connector to the debug pins, as shown in Figure 5.2.

Figure 5.2 9 8 7 6 et
Serial Ol_lt £ Looking at the back of the connector ©000o0 : :
connection from OO0 00 . [|m
a PIC. nll®

Ground
Microcontroller receive (PC transmit)

Microcontroller transmit (PC receive)

== -
.. === -
- = -

Once you've done this, connect the serial connector to one of the COM ports on your PC. You’ll

need a program to read your debug statements. We usually use HyperTerminal, which comes with

the Windows operating systems and reads the serial port. To open HyperTerminal, choose Start,
Accessories, Communications, HyperTerminal. Or you can open HyperTerminal by choosing Run from

the Start menu, typing hypertrm, and pressing Enter.

HyperTerminal will first ask you to open a file, or if you’ve never run it, to set up your connections
settings. Cancel out of this dialog box, click on the File menu, and choose File, Properties. Choose the
com port you want to use from the Connect Using drop-down menu in the Properties dialog box, then
click Configure. Configure the connection for 9600 bits per second, 8 data bits, no parity, 1 stop bit,
and no flow control. This will match all of our debug examples and serial communication examples.
When you’ve finished configuring, save your settings as a file so you can just open that file the next
time you open HyperTerminal. To open the serial port, click the Call button (phone on hook), and to

close the serial port, click the Disconnect button (phone off hook).

Once you’ve configured HyperTerminal, opened the serial port, and connected your PIC’s serial port to
the appropriate serial port on your PC, any debug statements in your PIC program will print out to the

HyperTerminal window.
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The Bad News

Like many things, no one can teach you how to program well. You just have to practice

it. But we can help you put yourself in a position to understand it. In the chapters that
follow, we’ll give many examples of full programs, as well as subroutines that can be
added to existing programs with little effort. These, and other programs you find online,
are your best first resource. Try to reverse-engineer the logic of these programs before you
set out on your own. As you go over them, pay attention to the flow of each program first,
by following the if statements and loops. Try to get the general ideas behind the program
before you get down to the syntax of the individual commands. Start with pseudocode and
grow your project slowly, testing out the parts separately. The truth is that the time you
spend programming is usually one-tenth designing and nine-tenths debugging. To cope
with this, it’s important to know the difference between persistence and endurance. Take
breaks, work on other problems, and talk to other people about your work. Be prepared to
start again from a high-level description when you lose track of what your code is doing.
When you hit problems, always ask yourself how important the solution is to your overall
application. Know when to abandon those problems that you don’t need to solve. It is
worth the effort because knowledge of programming will increase your understanding and
mastery of all of the programmed and programmable devices in your everyday life.
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The “Big Four” Schematics,
Programs, and Transducers

Now that you’ve got the basics of programming in hand, it’s time to start talking about where
the computing meets the physical. As we mentioned in the Introduction, one of the key
aspects of physical computing is transduction, or the conversion of one form of energy into
another. Recognizing which form of energy you can sense as input and which form of energy
you need to generate as output will determine which transducers you will use. Choosing your
transducers is often the biggest challenge in designing and implementing a physical computing
project. This chapter presents transducers organized by the categories discussed in the
Introduction: input (sensing actions) and output (controlling actions). Both of these categories
are further broken down into analog or digital. Digital control or sensing methods result in
only two possible outcomes: on or off, in or out, up or down, left or right, and so forth. Analog
methods provide for a range of possible outcomes: dark, dim, brighter, and blinding; far away,
closer, much closer, and “Get outta my face!”

In this chapter, we’ll introduce some transducers, circuits, and programming for what we
call the “Big Four:” digital input, digital output, analog input, and analog output. Almost
everything you make in physical computing will fall fairly neatly into one of these categories
and will use some variation of the transducers, circuits, and programs we present here.

Digital Input

Digital inputs are the simplest transducers. There are only two possible states for a digital
input: on or off. At its most basic, a digital input is just two conductors that can be touched
together to complete a circuit or moved apart to break the circuit. The switch is the most
common example.

Transducers: Switches

Suppose you want to know when a cat is on a mat. You could put a small switch under the

mat so that the weight of the cat would press the switch, completing the circuit containing the

switch. It may seem a bit grand to call something so simple a transducer, but it is converting

the mechanical energy exerted by the cat’s body weight into electrical energy in the circuit.
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There are a few terms that are useful when choosing switches.

Normally open means that the switch’s contacts are not touching when the switch isn’t
pressed, so the circuit is not complete. These switches make the most intuitive sense. In
normally closed switches, the contacts are touching when the switch is not pressed, so that
the circuit is complete.

Momentary switches have a spring in them so that they snap back to their normal position
after you stop applying pressure. The switch that controls your refrigerator light is usually
a momentary switch. Toggle switches don’t have a spring, and will stay in whatever
position they’re left in. Most wall light switches are toggle switches.

A switch has a certain number of poles. Each pole can connect (or disconnect) two wires.
In other words, each pole can control a separate circuit. For example, for stereo speakers
you might need a double-pole switch to switch both speaker circuits at once. A switch’s
throw describes how many possible closed positions it has. For example, a double-throw
switch will actually have three positions: a center position (in which the switch is open),
a left position, and a right position. You'll see these two characteristics, pole and throw,
listed together frequently and abbreviated as SPST (single-pole, single-throw, the most
common and most basic switch), DPDT (double-pole, double-throw), SPDT (single-pole,
double-throw), and so forth. For now we’ll keep it simple and use single-pole, single-throw
switches (SPST). Figure 6.1 shows a DPDT knife switch.

Figure 6.1
A double-pole,
double-throw switch.

Double Throw

Double Pole

Switches are normally rated by the maximum voltage and amperage that they can carry.
For example, most household light switches will be rated to carry 250 volts AC, and 15 to
20 amps of current. You can always put less current or amperage through a switch than it’s
rated for. This means that if you wanted to use the aforementioned household switch as an
input to your microcontroller, you could, even though it would only be carrying 5 volts DC
and a few milliamps.
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If your switch is meant to be seen and intentionally pressed by the user, you can go to
any hardware store and buy a wall switch or doorbell push button. Radio Shack and the
various online vendors listed in Appendix B also have a wide variety of regular switches.
You can get some really fun switches from arcade game vendors, like Happ Controls
(http//:www.happcontrols.com).

In many cases you will want the user to throw a switch without knowing it; for example,
the cat on the mat shouldn’t have to intentionally press the switch. His normal behavior,
that is, sitting on the mat, should activate the switch. In these cases, you will need to build
the switch in such a way that the user triggers it in the course of their normal action. This
requires building the switch into some object that they’ll touch. A switch is really just

two pieces of metal that touch or don’t touch. If you can engineer a way for two contacts to
touch or not touch, depending on the user’s actions, you have made a switch. For example,
if you take a thin slice of foam rubber with holes in it, sandwich it between two metal
plates, and attach a lead from each plate to your circuit, then you have a switch. If someone
steps on the metal plates, the foam rubber will compress and the plates will touch where
there are holes in the foam rubber.

When building switches for microcontrollers to read, the voltage and amperage going
through the switch’s contacts will usually be so small that a person touching the bare
metal wouldn’t get hurt. However, you should get in the habit of building your switches
in such a way that the person throwing the switch never comes in contact with any of the
bare metal carrying electric current.

In addition to building your own switches, there are many types of interesting switches to
know about. See Figure 6.2 for a few examples.

Figure 6.2
A variety of switches.
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P Foot switch. These are usually rugged toggle or momentary switches
designed to take a hard stomp from a person’s foot. The H&R Catalog [(215)
788-5583] has many nice foot switches.

P Tape switches or mat switches. These are similar to the cat mat switch
described above; they are simply two metal strips separated by thin
foam encased in a mat. Most security stores sell these, as does http://
www.tapeswitch.com.

P Roller switch. This is a momentary switch that requires very light pressure
to close it. It has a ball or wheel at the end of the switch to reduce the
friction of whatever is pushing the switch. Roller switches are useful for
detecting closing doors, closing box lids, or objects sliding over a surface.
You can get them from Radio Shack or any online electronics vendor.

D> Hair trigger switches or whisker switches. These are momentary switches,
similar to roller switches, only more sensitive. They’re usually a spring with
a fixed post in the center. When the spring moves, it contacts the post and
closes the circuit. They can detect the slightest contact. Solarbotics (http:
/lwww.solarbotics.com) sells some very sensitive whisker switches.

P Mercury switches or tilt switches. These open or close depending on how
they are oriented. They have a drop of mercury, which is both a liquid and
a good conductor, in a glass tube with two contacts at the end. When the
mercury rolls to one end of the tube, the mercury conducts current between
the leads and the switch closes. When the tube is tilted the other way, the
contacts are not connected. Mercury is very poisonous, so these switches are
becoming less common. A similar switch, made with a ball bearing in the
tube instead of mercury, is a safer replacement and very common.

P Magnetic switches. These switches close when a magnet passes over them.
There are two very thin metal contacts inside that are pulled together by
a magnetic field. They are common in cheap burglar alarm installations.
They’re handy when you need a moving object to throw a switch. The object
only needs to have a magnet in it so it can be free of encumbering wires. You
can pick these up at Radio Shack, where they are called reed switches.

Digital Input Circuit

To connect a digital input to a microcontroller, you need three connections: a connection
to power on one side of the switch, a connection to your microcontroller on the other side
of the switch, and a connection to ground. From the schematic in Figure 6.3, you can see

that if the switch is closed, the microcontroller’s input is connected to +5 volts, and if the
switch is open, it’s not. So why do you need the resistor?

When a microcontroller pin is in input mode, it’s waiting for any voltage to affect it. When
the switch is connected to 5 volts, it’s clear what the voltage affecting it is, and the input
on the microcontroller reads as high. When it’s not connected to 5 volts, however, any stray
voltage can affect it: static electricity, voltage generated by radio waves, and so forth. By
connecting it to ground through a resistor, we have a way for those stray voltages to get to
ground instead of affecting the input.
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Figure 6.3 +5V
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Great, you're saying, so why not just use a wire to connect to ground without the resistor?
Remember: electrical current follows the path of least resistance to ground. If you just had
a wire connecting the switch and the pin to ground, then, when you closed the switch, the
path of least resistance would be through that wire, and you’d have a short circuit. The
easiest path for the current is through the closed switch. When the switch is open, the
resistor offers the only path and the current goes through it.

Programming
Here’s the pseudocode describing what we’re going to do in our program to make the
microcontroller read the switch:

Put a pin into input mode
Loop
Check if the pin is 0 or 5 volts
If the pin has 5 volts
Do something
End if
End Loop

Since a microcontroller’s I/O pins can be either inputs or outputs, you have to put a pin
into input mode before you can use it as an input. On some microprocessors, the command
to read the pin as an input automatically makes it an input. On others, you have to give

a command to make it an input first. The input command is the easiest way to do this in
PBASIC, MBasic, and PicBasic Pro. In BX-Basic, the command for reading the pin, getPin(),
also sets the pin to input mode.
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When the microcontroller reads a pin, it is sensing the voltage at that pin. It can sense the
difference between no voltage (0 volts) or full voltage (5 volts), but nothing in between.!
Software represents those voltages as true or false, 1 or 0. If it’s reading 5 volts, this will
be read as the value 1 (true). If it’s reading 0 volts, it will be read as the value 0 (false). The
following program reads a digital input and prints out the state of the input continuously:

PBASIC

@O

' declare a variable called X:

X var byte

' make pin 7 an input pin:

Input 7

Main:
' read the value of pin 7 into the variable X:
X = in7
' for Pbasic, remove the square brackets below:
Debug ["X = ", DEC X, 10, 13]

Goto main

PicBasic
Pro

' in PicBasic Pro, we need these lines at the top of our program

' to set the pin that we're debugging on, and the baud rate at which
' to send debug messages:

INCLUDE "modedefs.bas"

DEFINE DEBUG_REG PORTC

DEFINE DEBUG_BIT 6

DEFINE DEBUG_BAUD 9600

DEFINE DEBUG_MODE 1

' declare a variable called X:
X var byte

' make pin BO an input pin:
Input portb.0

Main:
' read the value of pin BO into the variable X:
X = portB.0
Debug "X = ", DEC X, 10, 13

Goto main

1 In fact, a digital input on a microcontroller changes from 0 to 1 at a certain threshold between 0 and 5 volts. The
threshold varies from processor to processor, but if you assume the threshold is about halfway between 0 and full voltage,
you're usually safe.
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NOTE

On the PIC 18F452 if you try to use the pins RAO through RA5 or REO through RE2 as
digital inputs, you may have some difficulty. These pins are set as analog inputs by
default (see below for more on analog inputs). To set all these pins as digital inputs,
add the following lines of code to the top of your program:

ADCON1 = %10000110
TRISA = %11111111
TRISE = %00000111

This sets the pins of PORTA and PORTE to digital input.

BX-Basic ' declare a variable called X:
dim x as byte

i

sub main()
do
' getPin command sets the I/0 mode and reads
' the value of the pin into the variable X:
X = getPin(12)
Debug.print "X = "; cstr(X)
Loop
End sub

You put the input commands outside the main loop because once you tell a pin that it is being
used as input, it stays that way, so you don’t need to repeat the command. There are methods
for setting the mode of multiple pins with one command, and for reading multiple pins with
one command, that you will see later in Chapter 14, “Managing Multiple Inputs and Outputs.”

When you ran the program above, you noticed that the microcontroller printed out X = 1 over
and over whenever you pressed the switch, and X = 0 over and over whenever you didn’t.
This is because the microcontroller hasn’t been told to make any decisions, just to report the
state of the switch. Once you know the state of a digital input, you have to decide what to do
with it. You might output something immediately on another pin of your microcontroller;
for example, you might turn on an LED. But if all you’re doing is turning something on when
the switch is thrown, you don’t need a microcontroller. The microcontroller’s value lies in
the fact that it lets you make more complex choices. You can use the if statement to turn
something on only if a particular combination of switches is thrown, or only if the switches
are thrown in a particular sequence. You can use the microcontroller to control the duration
of your response to the switch, or to delay your response to the switch. Or you can use it to
send messages to other devices in response to the switch. It makes possible a more complex
response to, and a more detailed message from, the input.

In the following example, there are three switches attached to a microcontroller. We’ve also
attached digital outputs (see the next section) to a few pins of the microcontroller in the
form of an LED. If all three switches are not on, an LED attached to pin 8 comes on. When
all three switches are pressed simultaneously, another LED attached to pin 7 flashes twice.
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PBASIC

@O

' Put pins into input mode:
input 2
input 4
input 6
MyLoop:
' turn off the "switches off" LED:
Tow 8
'if all the switches are on then turn off the "switches off" LED
' and go to the flash routine:
if in2 = 1 and in4 =1 and in6 = 1 then
" Turn on the flashing LED, and turn off the "switches off" LED:
High 7
Low 8
Pause 100
flash the flashing LED:
Low 7
Pause 100
High 7
Pause 100
Low 7
Else

if any one of the switches is not on, turn on the "Switches off"
LED:

High 8
' turn off flashing LED:
Low 7
Endif
Goto MylLoop

PicBasic
Pro

' Put pins into input mode:
input portB.0
input portB.1
input portB.2

MyLoop:
' turn off the "switches off" LED:
Low portC.1
"if all the switches are on then turn off the "switches off" LED
' and go to the flash routine:
if portb.0 = 1 and portb.l =1 and portb.2 = 1 then
' Turn on the flashing LED, and turn off the "switches off" LED:
High portC.2
Low portc.l
Pause 100
' flash the flashing LED:
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Low portC.2
Pause 100
High portC.2
Pause 100
Low portC.2

else
' if any switches are not on, turn on the "Switches off" LED:
High portC.1
' turn off flashing LED:
Low portC.2

endif

Goto MylLoop

( BX-Basic) ' no need to declare pins as inputs: putPin() command does this automatically Tater on.
Sub main()
do

" turn off the "switches off" LED:
call putPin (11,0)

"if all the switches are on then turn off the "switches off" LED
' and go to the flash routine:
if (getPin(14) = 1) and (getPin(16) = 1) and (getPin(18) = 1) then
" Turn on the flashing LED, turn off "switches off" LED:
call putPin(12,1)
call putPin(11,0)
call delay(0.1)

' flash the flashing LED:
call putPin(12,0)
call delay(0.1)
call putPin(12,1)
call delay(0.1)
call putPin(12,0)

else
' if any one of the switches is not on,
" turn on the "Switches off" LED:
call putPin(11, 1)
' turn off flashing LED:
call putPin(12, 0)

end if

Toop
End Sub
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Digital Output

There are countless types of digital output transducers. Anything that can be turned
on or off—for example, a fan, a radio, or a car—is a potential digital output transducer.
The challenge in interfacing output devices to the microcontroller lies in figuring out
how those devices can be turned on or off using the 5 volts and approximately 10 to 20
milliamps that a microcontroller’s output pin supplies.

Transducers

The simplest digital output transducers are those that can connect directly to the
microcontroller. You've already used one, the LED, back in Chapter 4. LEDs are staples of
physical computing applications because they’re so easy to power. They’re an ideal way
to give a simple indication as to whether something’s working or not. It’s good to keep a
handful around if just to use as indicators and debugging tools. The BX-24 even has two
LEDs built into the module. Try this bit of code to see them.

(BX-Basic)  Sub main()

do

1 putPin(25, 0)

1 putPin(26,1)
Call delay(0.2)

1

1

1

Call putPin(25, 1)

Call putPin(26,0)

Call delay(0.2)
Loop

End sub

Notice that the LEDs mounted on the BX-24 are turned on by taking the pin low, and off by
taking it high. Extra credit if you figure out why (hint: what happens if the LED’s direction
is reversed, and the LED and resistor are connected to 5 volts instead of ground?).

Besides the everyday LEDs, there are a variety of other LEDs that can be useful.
Superbright LEDs (usually rated to output 1000 millicandela or more, where a candela is a
unit of brightness) come in a range of colors, and, at their brightest, are enough to read by.
Red and yellow ones tend to be cheapest, followed by green, blue, and white. In addition to
being used as digital outputs, LEDs can also be used as analog outputs by dimming them.
We’ll get to how that’s done later on.

In addition to LEDs, any piezo buzzer that operates at 5 volts or less, and 10 to 20
milliamps (mA) or less can connect to the microcontroller. Connect the buzzer’s other end
to ground, and it’ll buzz when you put the output pin high.

Most other digital output devices, from motors to solenoids to light bulbs to coffee grinders,
will need more voltage and amperage than a microcontroller’s outputs can supply. For
these, you’ll need an intermediary. The two most common devices you'll use to control
devices that need higher current are the relay and the transistor. Digital output techniques
using transistors and relays can be used to control anything that can be switched on and
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off—too many to list completely here. A standard relay is simply an electronically thrown
switch that can control anything controllable by a normal switch. That includes DC power
or AC power and audio, video, or data signals. In our work, we’ve seen CD players, remote
control cars, talking teddy bears, food blenders, and more, all interfaced to microcontrollers
by simply substituting an existing switch with a relay. Transistors are fast and cheap but
can only work for DC loads. DC motors are very easy to interface to transistors, and are
good for creating rotary motion (we’ll discuss those in more depth in Chapter 10, “Making
Movement”). Solenoids can be used to create linear motion (also discussed in Chapter 10).
Fans, which are just applications of motors, are good for air movement and temperature
regulation. Incandescent light bulbs can create light and heat, and they have a gentler fade
than LEDs. Peltier junctions can create a cooling effect; heaters of many varieties can do
the reverse. Rather than going on about what you can possibly turn on and off, we will go
into some depth on the intermediary devices, the relay, and the transistor that will be used
for almost all of them.

Relays
Relays are switches that are thrown by an electromagnet instead of the mechanical action
of your finger. There are two types, electromechanical relays and solid state relays.

Electromechanical Relays are devices that use electrical energy to control a mechanical
switch. When the microcontroller sends current through the electromagnet, the
electromagnet pulls a conductor across two contacts inside the relay. These two contacts
being moved by the electromagnet are in turn attached to a separate circuit, called the load
circuit, carrying enough power to control the device you want to control. You can actually
hear the click of the conductor hitting the contacts. Figure 6.4 illustrates this idea. Some
electromechanical relays are called reed relays because the contacts for the switch look
like thin metal reeds.

Figure 6.4 To high-current
Electromechanical power source

relay.

shaft ———m 2 )
coil

<
>

<
>

| __—— To microcontroller pin
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Solid state relays function similarly to electromechanical relays, but there are no moving
parts. As a result, they are slightly faster than electromechanical relays. They are also
more expensive.

Relays are rated by the current and voltage required to control the electromagnet, or “coil,”
and by the current and voltage that can pass through the bigger load circuit. In order to

use a relay to control a device from your microcontroller, you must first find a relay with

a coil that can be thrown by the digital output power (5 volts, 10 to 20 milliamps) of your
microcontroller. 5-volt reed relays and most solid state relays will work well with the power
from a microcontroller’s output pin. When you’'ve found a relay whose coil can be controlled
from the microcontroller, check that your relay will carry the load of the device you are
trying to turn on and off. The capacity of your relay will be specified in volts and amps, but
your load might be described in watts. You can go back to a formula from Chapter 3 to figure
this out: watts = volts x amps. For example, a typical reed relay’s load circuit can carry 0.5
amps at 120 volts, enough to control a 60-watt light bulb.

Sometimes the electromagnet in your relay will require more current or voltage than the
microcontroller can output. This is particularly true of electromechanical relays that can
switch very high current loads, because they need to move large conductors across the
contacts. Solid state relays, on the other hand, can usually switch a larger load with a
relatively small control voltage and current, because they have no moving parts.?

Transistors

Transistors are electronic devices that control a large current from a smaller current, much
like relays. Transistors are very versatile devices, and there are many varieties and uses for
them that we won’t go into here. For our purposes, they work well as electronic switches,
and function much faster than relays and are less expensive. Unlike relays, however,
transistors are strictly DC components. They cannot switch alternating current.

There are several types of transistors. They come in two major classes: bipolar transistors,
and field-effect transistors (FETs). For our purposes, we’ll be talking only about bipolar
transistors. All transistors have some properties in common. They all have three
connections, referred to as the base, the collector, and the emitter (on FET transistors, the
three connections are the gate, the source, and the drain). By putting a small voltage and
current on the base of a transistor, you allow a larger current to flow from the collector to
the emitter. In this way they function as amplifiers.

Among bipolar transistors, there are two types: NPN transistors, and PNP transistors. To
use the nomenclature from switches, the NPN is equivalent to a normally open switch and
PNP is equivalent to normally closed switch. You’ll use NPN transistors in the examples
here, specifically a very robust transistor called a Darlington transistor. This type of
transistor is designed to switch high-current loads.

Keep the packaging for your transistors because it should have a key for telling which leg is
the base, the collector, and the emitter. If not, you will need to look up the transistor’s data

21f you can't find a relay that will match both your microcontroller and your load, match the load and put in a transistor
circuit as another intermediary to power the relay.
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sheet on the Internet. We recommend http://www.findchips.com for this; you can enter any
electronic part number and find a reseller and a data sheet. Alternately, type the part number

into any search engine and you’ll often get the data sheet as one of the first links.

Circuit

To turn almost any device on or off, you interrupt one of two wires running from its
power supply and place a microcontroller, relay, or transistor in that path. In most cases,
you will just be snipping one of the wires in the power cable of the device. If you are
hacking into an existing device, like a teddy bear or a remote control car, you will be

replacing an existing switch, which already interrupts the circuit. Whether you use just a
microcontroller, a relay, or a transistor to interrupt the circuit will be determined mostly

by the amount of current and voltage that your device requires.

The simplest digital output circuit is one you’ve already seen that only needs the
microcontroller to interrupt power to the device. It’s the one used to turn on an LED,

shown in Figure 6.5.

Figure 6.5

The simplest digital
output: an LED, and its
schematic.
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If you have a buzzer or another device that can operate on 5 volts and 10 to 20 mA or less,
you can replace the LED and resistor with the buzzer in this circuit and it will turn on
when you take the output high. For any other device, you’ll need a transistor or relay.

For small battery powered (DC) devices, a transistor will work well. For example, DC
motors work well when controlled by a Darlington transistor. The circuit looks like the one
shown in Figure 6.6.

Figure 6.6 To motor power supply
A microcontroller

controlling a DC motor

through a transistor.

For more on the TIP 120

capacitors in this 1KQ

circuit, see the sidebar T4 microcontroller snubber diode
below on decoupling output pin (1N4004)
capacitors.

10puF Capacitor

- W N W

base
"'1 collector b

& emitier

Note that the ground of the motor’s supply circuit and the ground of the microcontroller must
be common. You need to combine these grounds for the circuit to work. The diode across the
motor in this case is used to control blowback voltage. When a motor is spinning, it induces an
electrical current in the wires wound inside it in the opposite direction of the current that’s
powering it. The diode across the motor stops this back electricity from affecting the rest of the
circuit. We'll talk more about this in the chapter on motors, Chapter 10.

If you want to control a device that uses AC current from a wall socket, the simplest way
is to use a relay. Relays can switch AC or DC power and video or audio signals as well. See
the circuit in Figure 6.7.
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Figure 6.7 1
A 120V AC relay circuit P
AC
plug

E——¥

relay

© Tl

microcontroller SRS

socket

light
bulb

CAUTION

This circuit gives you the capacity to put AC voltage in your circuits. This power
can kill you, not to mention your microcontroller. Get the DC side of the circuit
correct before you plug in the AC side of it. Before attaching the AC or the load, use
a multimeter to test the resistance on the switch side of the relay (continuity check
will not work on solid state relays). Make sure the AC power connects to the two
contacts on the switch of the relay and never touches anything else that leads back
to the microcontroller. Insulate all AC contacts with rubber or electrical tape before
powering the circuit. Only cut one of the two AC wires to connect the relay. Be clear
headed when wiring AC circuits. Make sure the AC cables are securely fastened and
will not get detached while the circuit is plugged in. Note that in the AC control
circuit, there is no connection between the microcontroller ground and the AC
ground. If possible, get a person more experienced with electricity to look over your
circuit before plugging it in.

Programming

The programming for digital output is very simple, and you have already used it to control
an LED. Simply take the output pin high to turn on the device, and low to turn it off.
Here’s a simple program to turn a device on and off every third of a second. Once you have
this program working with an LED, try it with a transistor or relay controlling a motor or
another more exciting device.

TEAM LING - LIve, Informative, Non-cost and cenuine !

indino eusia



102 Part | - The Basics

PBASIC main:
' turn the device on:

N High 0
MBasic
' wait 1/3 of a second:

pause 300
'turn the device off:
Low 0
' wait 1/3 of a second:
pause 300

Goto main

PicBasic main:
Pro " turn the device on:

High portb.l
' wait 1/3 of a second:
pause 300
'turn the device off:
Tow portb.1
' wait 1/3 of a second:
pause 300

Goto main

(BX-Basic)  Sub main()

do

' turn the device on:
Call putPin(5,1)
" wait 1/3 of a second:
Call delay(0.3)
'turn the device off:
Call putPin(5,0)
" wait 1/3 of a second:
Call delay(0.3)

Loop

End sub

Analog Input

If you are after more information about a person’s actions than can be supplied by a digital
input, you will need an analog input. For example, let’s return to our cat on the mat.
Perhaps you want to know how fat the cat on the mat is. In order to determine this, you’ll
need a way to measure the varying range of force exerted on the mat. An analog sensor like
a force-sensing resistor (discussed below) would let you measure not only the presence or
absence of force exerted by the cat’s weight, but also how much force is exerted.
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Transducers

A few different kinds of transducers

will read an analog input. Some are very
simple to work with, and others require

a significant amount of extra circuitry to
use. For this chapter, we’ll concentrate on
the simple ones: variable resistors.

Variable Resistors

The most common class of transducers for
analog input are variable resistors. Variable
resistors convert a change in mechanical,
light, heat, and other forms of energy into

a change in resistance. The most common
variable resistor is a potentiometer, or pot
for short. Pots are used in many everyday
devices. Volume knobs are pots, varying
the resistance and therefore the signal
strength that reaches the speakers. Pots are
great in situations where you need a simple
variable control that’s hand-operated, but
that’s not always what you need in physical
computing projects. Fortunately, there are
many other types of variable resistors.

Thermistors are variable resistors whose
resistance changes with the ambient
temperature. A photocell’s resistance varies
with the intensity of the light hitting it.
Force-sensing resistors, or FSRs, have a

INDUCTIVE VERSUS RESISTIVE LOADS

There are two general classes of devices you
might control from a microcontroller: inductive
loads and resistive loads. Inductive loads are
devices that work by inducing a current in a
wire using the current in another wire or by
passing the wire through a magnetic field.
Motors and solenoids are examples of inductive
loads. Inductive loads produce blowback
voltage. They should have a diode placed in
parallel with them, or with the transistor
controlling them, as in the motor circuit in
Figure 6.6, to lessen the effects of the back
voltage. You'll deal with them in depth in
Chapter 10. Resistive loads are devices that work
by resisting electrical current and converting

it to some other form of energy. Light bulbs

and heaters are resistive loads. Resistive loads
don’t create a blowback voltage, so no diode
protection is necessary. A good rule of thumb is
that if it creates motion of any sort, it’s probably

an inductive load.

variable resistance that depends on the amount of force exerted on the sensor. Flex sensors
offer a varying resistance depending on how sharply they are bent. It may be that one of
these is perfect for your needs. For example, a flex sensor could determine how much a
person is bending her finger, or a force-sensitive resistor could measure how hard she is
squeezing a ball. You may have to creatively contrive the situation so that the information
you're after alters the energy on a transducer you want to use. For example, you might use
a thermistor to sense how hard a person is blowing (because a person’s breath will change
the ambient temperature) or use a photocell to determine the distance of an object from
the sensor (objects closer to the photocell will block more light, if the object is between the
light source and the photocell).

Because microcontrollers are binary in nature, they can only read a high voltage or a
low voltage. In order to read a changing voltage, certain accommodations are necessary.
Many microcontrollers come with built in analog-to-digital converters. An analog-to-
digital converter measures a range of voltages and converts the value of the voltage at
any given moment to a digital value to be stored in the microcontroller’s memory. Some
microcontrollers, such as the BS-2 and certain PIC models, do not have built-in ADCs.

TEAM LING - LIve, Informative, Non-cost and cenuine !

induj Sojeuy



104  Part1 - The Basics

For those microcontrollers, you use a resistor-capacitor circuit to “fake” an analog-to-
digital conversion.

Variable Voltage Analog Input Transducers

Besides the simple analog transducers we’ve already mentioned, there are several more
complex analog transducers that can be very useful. Many of these operate on 5-volt DC
power already, making them convenient to interface with a microcontroller. Usually,
complex analog transducers operate on a given power supply (for example, 5 volts) and
produce a variable voltage as output. For example, the Sharp infrared proximity ranger
(Sharp GP2D12) operates on 5-volt DC, and outputs a variable voltage between 0 and 5 volts
depending on the proximity of an object in its field of view. The GP2D12 can sense objects
in a range from about 10 to 80 cm. Other models in the same family can detect objects in
different ranges. We’ll discuss these more in depth in Chapter 9, “Sensing Things.”

There are some devices that produce a varying voltage that’s not in the 0 to 5 volt range of

a microcontroller’s ADCs. For example, microphones produce a varying voltage, but one

that varies only by a few microvolts. In order to use microphones and other devices that
produce microvolt changes, it’s necessary to use a circuit to amplify the voltage to the range
that the microcontroller can read. One simple way to do this with a microphone is to pass
the microphone’s signal to an audio amplifier, which raises the voltages to levels that are
readable by a microcontroller. We’ll detail this in Chapter 13, “Controlling Sound and Light.”

Circuit

There are two basic circuits for reading an analog voltage on a microcontroller: the
voltage divider and the resistor-capacitor circuit. Voltage divider circuits work only on
microcontrollers that have analog-to-digital converters. R-C circuits work on all the
microcontrollers we’re writing about.

Voltage Divider

Even microcontrollers that support analog to digital conversion usually only do so on select
pins. Before you get started with this circuit, you should identify the ADC-capable pins

on your microcontroller. On the Basic Atom Pro24, they’re pins 0 through 4. On the BX-24,
they’re pins 13 through 20. On the PIC 18F452, they’re pins RAO through RA3, RA5, and
REO through RE2. The BS-2 does not have any ADC pins.

You use variable resistors by passing a current through them and reading the voltage
that comes out of them to determine how much they are resisting that current. In Figure
6.8, we connected a variable resistor (in this case, a flex sensor) from +5 volts to the
microcontroller pin and a fixed resistor from the pin to ground. Use a fixed resistor that’s
in the general range of the variable resistor’s range. For example, if your variable resistor
varies from 10K to 100K, a 10K fixed resistor will suffice.

This is called a voltage divider circuit because the variable resistor and the fixed resistor
divide the voltage into two parts. The variable resistor feeds a varying voltage to the
microcontroller pin. The fixed resistor provides a path to ground. The voltage at the point
where the resistors meet (namely, the pin) will vary with the ratio of the resistors’ values.
For example, when the resistors are equal, the voltage on the pin will be exactly half of the

supplied voltage, or 2.5 volts.
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Figure 6.8 +5V

Analog input: a flex

Sensor. Variable
resistor
(photocell,
thermistor,

flex sensor, etc.)
To Microcontroller

fixed resistor (value equivalent
to variable resistor)
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In the circuit seen in Figure 6.9, we used a potentiometer instead of the two resistors from
the previous circuit. If you break open a potentiometer, you’ll find a center slider touching
into a single resistive strip. This makes the resistance of the two sides of the potentiometer

perfectly complementary, and so it’s perfect to replace the two resistors in our voltage

divider circuit. If you connect one side of the pot to ground, the other to 5 volts, and the
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center to the microcontroller ADC pin, you will get a range of numbers from 0 to the
maximum that the ADC can return.
Figure 6.9 +5V
Analog input:

a potentiometer.

To Microcontroller
10KQpot.
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If you build these circuits as-is, place your multimeter leads at the point that would go to the
microcontroller and at ground, and measure for voltage, you will see a changing voltage value.

RC Circuit

If your microcontroller doesn’t have any ADC pins on it, or not enough of them, there is
another method you can use to measure a varying resistance using a capacitor. The method
you’ll be using is called rctime. The circuit for it looks like the one shown in Figure 6.10.

Here’s what happens when you use the rctime command. Capacitors store charge when
they're fed electricity, and release it when the feed is turned off. First, you take the input
pin high. This lets all the charge out of the capacitor (since both sides of it are high). Then
the microcontroller sets the voltage on the input pin low, causing the capacitor to start
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building up a charge. The microcontroller starts counting time, waiting for the capacitor to
recharge. The charging happens in a matter of microseconds, but a microcontroller is fast
enough to measure that time. The more resistance from the variable resistor, the longer it
will take to charge. Once all the capacitor is charged, the microcontroller returns a value.
The higher our variable resistor’s resistance, the higher the value the rctime command
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returns. rctime is somewhat slower than using an ADC but it’s handy when you don’t have
an ADC to use. For most variable resistor sensors, it will do the job just fine. You may also
be able to use the rctime command with a sensor that produces an analog voltage in the 0
to 5 volt range, like the Sharp IR rangers mentioned above. Remove the resistor from the
RC Circuit and attach the sensor’s voltage output to the microcontroller pin. Leave the
capacitor in your circuit, between the microcontroller pin and ground.

Programming
Here’s the pseudocode describing what we’re going to do in our program to make the
microcontroller read an analog input:

Make a variable big enough to store the analog value that you'll be taking in.
Loop

Read the analog value coming in

Qutput the number
End Toop

Analog-to-Digital Converters
Here’s the code for reading an analog-to-digital converter.

NOTE

Because the BS-2 does not have ADCs, no PBasic is shown below.

( MBasic ) ' note: the Basic ATOM Pro24 has 4 ADC inputs, pins O through 3.
' this example uses pin 0.

ADCVar var word
QutputVar var byte

Main:

' read the ADC on pin 0:

ADIN 0, ADCVar

' debug the raw value:

debug ["ADCVar: ", DEC ADCVar, 10,13]
goto main

NOTE

With the PIC, you have to set up a number of special function registers before you can
use the ADCs.
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PicBasic
Pro

' Set Debug pin port

DEFINE DEBUG_REG PORTC

' Set Debug pin BIT

DEFINE DEBUG_BIT 6

' Set Debug baud rate

DEFINE DEBUG_BAUD 9600

' Set Debug mode: 0 = true, 1 = inverted
DEFINE DEBUG_MODE 1

' Define ADCIN parameters

DEFINE ADC_BITS 10 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 20 ' Set sampling time in uS

' declare a variable to hold the result:
ADCVar var word

TRISA = %11111111 ' Set PORTA to all input

ADCON1 = %10000010 ' Set PORTA analog and right justify result
Pause 500 ' Wait .5 second

main:

' read ADC channel 0:
adcin 0, ADCVar
' debug the raw value (the value 13 makes the return):
debug "ADCVar: ", DEC ADCVar, 13, 10
GoTo main

( BX-Basic )

' Note: the BX-24 has 8 analog inputs, on pins 13 - 20.
' This example uses pin 13

' set up a variable to hold the result:
dim ADCVar as integer

Sub main()
call delay(0.5) ' start program with a half-second delay

do
ADCvar = getADC(13)
debug.print "ADCVar = " ; cstr(ADCVar)
Toop
end sub
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RCTime

Since the BS-2 has no analog-to-digital converters, you must use the rctime command
to read analog inputs on it. It is also possible to use an RC circuit as analog in on the
other microcontrollers, as all of our environments have an rctime command. Here’s the
example code.

( PBASIC ) ' since RCTime doesn't depend on an ADC, we can use any pin.

' This example uses pin 0:

' set up a variable to hold the result:
RCVar var word

Main:
' Take pin 0 high to discharge capacitor:
high 0
' hold 1 millisecond to make sure capacitor is discharged
pause 1
' Measure time it takes to charge again.
rctime 0,1,RCVar
' debug the result:
debug "RCVar: ", DEC RCVar, 10, 13

goto main

( MBasic ) ' since RCTime doesn't depend on an ADC, we can use any pin.

' This example uses pin 0:

' set up a variable to hold the result:
RCVar var word

Main:
' Take pin 0 high to discharge capacitor:
high 0
' hold 1 millisecond to make sure capacitor is discharged
pause 1
' Measure time it takes to charge again.
rctime 0,0,RCVar
' debug the result:
debug ["RCVar: ", DEC RCVar, 10, 13]
goto main

PicBasic ' since RCTime doesn't depend on an ADC, we can use any pin.
Pro ' This example uses pin BO:

' Set Debug pin port
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DEFINE DEBUG_REG PORTB

' Set Debug pin BIT

DEFINE DEBUG_BIT 6

' Set Debug baud rate

DEFINE DEBUG_BAUD 9600

' Set Debug mode: 0 = true, 1 = inverted
DEFINE DEBUG_MODE 1

' set up a variable to hold the result:
RCVar var word

Main:
' Take pin 0 high to discharge capacitor:
high portB.0
' hold 1 millisecond to make sure capacitor is discharged
pause 1
' Measure time it takes to charge again.
Rctime portB.0,1,RCVar
' debug the result:
debug "RCVar: ", DEC RCVar, 10, 13
goto main

111

(BX—BaSiC> ' since RCTime doesn't depend on an ADC, we can use any pin.
' This example uses pin 5:
' set up a variable to hold the result:
dim RCVar as integer

sub main()
do
' Take pin 0 high to discharge capacitor:
call putPin(5, 1)
' hold 1 millisecond to make sure capacitor is discharged:
call delay(0.001)
' Measure time it takes to charge again:
RCVar = Rctime(5,1)
' debug the result:
debug.print "RCVar: "; cstr(RCVar)
Toop
end sub

Pulsewidth Modulation for Input

Pulsewidth modulation (PWM) is another common method for getting an analog input.

With PWM, the analog value is not derived from the amount of voltage, as it is with

ADC, but from duration of a digital pulse of voltage. PWM is the main technique for
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powering transducers for analog output, but it can also be used for analog input. All of
the microcontrollers we're discussing have a command to read an analog value from a
device that produces a varying pulsewidth. On the BX-24, it’s called Pulseln. In pBasic,
mBasic, and PicBasic Pro, it’s called Pulsin. When you call the command, it waits until the
pin changes from high to low or low to high, then counts the time until the pin changes
back to the previous state. The result is a pulsewidth that represents the intensity of the
energy that the sensor measures. On the input side, PWM is not really used directly with
transducers but instead mostly as a form of communication protocol with advanced sensor
modules. There are two good examples using this technique, both with an infrared sensor
and an accelerometer, in Chapter 9, “Sensing Movement.”

Analog Output

There are times when you want to do more than simply turn a device on or off. Instead
of wanting the microcontroller to turn a light on or off, for example, you might want to
control how bright a lamp gets, or open a curtain halfway, or change the pitch of a sound.
In these cases, you will use analog output techniques.

As you saw in digital output, the small power output of a microcontroller limits the devices
that you can directly power to LEDs, piezo buzzers, and other low-current devices. With analog
output, you gain one very useful device, the hobbyist servo motor. You won’t be powering

it directly from the microcontroller, but you will be controlling it using the signal available
from an I/0 pin. You'll be using a method to control it that’s based on pulsewidth modulation
PWWM, described above. For anything other than these transducers, you'll need some additional
components and circuitry between the microcontroller and the final output device, just as

you needed a relay or a transistor to control a higher current load for digital output. Quite
often, youll handle analog output by using other devices with their own microcontrollers,
such as lighting dimmers, synthesizers, and motor controllers. In those cases, you'll talk to the
devices using serial communication, which we’ll cover in Chapter 7, “Communicating between
Computers” and Chapter 12, “More Communication between Devices.”

Pulsewidth Modulation for Output

Microcontrollers also can’t produce a varying voltage, they can only produce a high voltage
(in our case 5 volts) or low (in our case 0 volts). So to create a varying output voltage, you
“fake” an analog voltage by using pulsewidth modulation.

The pulsewidth is usually a very small time, a few microseconds or milliseconds at most.
Just as your mind can create the illusion of motion when images are flashed in front of

it rapidly (for example, at the movies, where 24 still frames a second makes a movie), it
will fill in the dark and light moments of a flashing LED so that the LED appears to be
somewhere between fully bright and off. The resulting average voltage is sometimes called
a pseudo-analog voltage.

In the graph in Figure 6.11, we pulse our pin high for the same length of time we pulse it
low. The time the pin is high (called the pulsewidth) is about half the total time it takes to
go from low to high to low again. This ratio is called the duty cycle. The duty cycle is 50
percent and the average voltage is about half the total voltage.
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Figure 6.11 A
Pulsewidth modulation
with a duty cycle of

50 percent.
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If you make the duty cycle less than 50 percent by pulsing for a shorter amount of time
than you pause, you get a lower pseudo-analog voltage (see Figure 6.12).

Figure 6.12 A
Pulsewidth modulation
with a duty cycle of — — S
20 percent.

Voltage

Effective voltage

Time

The Pulsout command is the main tool for analog output. In pBasic, mBasic, and PicBasic
Pro, it looks like this:

Pulsout pin, time

P> Pin is the output pin you want to send a pulse on.

P Time is the pulsewidth. On the BS-2, it’s in increments of 2 microseconds,
on the Basic Atom Pro24, it’s in increments of 1 microsecond, and on the
PIC it varies with the clock speed, 10 microseconds for a 4 MHz clock and 2
microseconds for a 20 MHz clock.

On the BX-24, the pulseOut does the same thing with a different syntax:
Call pulseQut(pin, time, state)

P> Pin (a byte variable) refers to the pin you’re going to pulse.
Time (a single variable) is the length of time each pulse takes, in seconds.
It’s in increments of 1.085 microseconds.
State (a byte variable) is the state that the pin will be in when pulsed. If
state = 1, the pin will normally be low, and pulse high. If state = 0, the pin
will normally be high and the pulse low.

While Pulsout (or Pulseout) is executing, nothing else can happen. The microcontroller will
do nothing else but pulse the output pin for the time of the pulsewidth. So if you give a
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very long pulsewidth value, you might see the microprocessor stop all other functions, like
reading sensors or controlling other outputs, at that time.

In the following section, we will demonstrate the basic circuits and programs for analog
output by dimming an LED, and then by controlling the speed of a regular DC motor. We’ll
go on to show how to vary the tone of a speaker and the position (as opposed to speed) of a
servo motor. The circuits and programming for these are fairly specialized, so we will treat
them individually.

LED Dimming

The easiest way to see PWM in action is to attach an LED to the pin that you’re pulsing.
You'll use the same digital output circuit for the LED that you used above.

We recommend that you try this just so you get the idea of PWM. It’s not a very satisfying
display for your projects for two reasons: it has visible blinks, and it is not very powerful.
To solve the first problem you’ll add a smoothing circuit, and to solve the second you will
add a transistor circuit and replace the LED with a motor.

Normal LEDs respond to the changing voltage very quickly. As the pulsewidth gets greater,
you will actually see the LED going on and off rather than dimming. This is because your
eye can detect the changes if they’re slow enough. Adding a low-pass filter circuit will
smooth this somewhat.

Smoothing circuits or low-pass filter circuits use a combination of a capacitor and a
resistor to average out the pulses so the time when the LED is off between pulses is not so
pronounced (see Figure 6.12). The capacitor stores up a charge during a pulse and releases
it between pulses.

This circuit doesn’t smooth all the pulses. It’s called a “low-pass filter” because it allows
pulses below a certain threshold frequency to pass through without smoothing them, and
smoothes out those above the threshold frequency into an even pseudo-analog voltage. The
range of frequencies filtered out is determined by the ratio of the resistor’s value to that of
the capacitor. The formulas are more complex than we want to delve into here. If you're
dimming an LED, start with a 10pF capacitor and a 220-ohm resistor, then experiment with
different values from there to see what works best.

DC Motor Speed Control

You can use PWM to dim an LED, and you can also use it to control higher-current devices
too, by using a transistor, just as you did in the digital output section above. Below, you’ll
use it to vary the speed of a DC motor.

You use the same transistor circuit as we did in Figure 6.6 to turn the motor completely on
or off, but instead of putting the output pin of the microcontroller high or low, you use the
pulseout command to turn it both on and off thousands of times per second. The range of
the required pulseout varies depending on the motor and the transistor used, but a range
from 200 microseconds to 20 milliseconds is a good starting range. The varying pseudo-
analog voltage on the base of the transistor creates a corresponding variation of the current
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Figure 6.13
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flowing through the motor, and the motor spins at a variable rate. The motor has built-in
smoothing because it takes a while to speed up and slow down, so it will probably not need
a smoothing circuit. We’ll discuss this in more depth in Chapter 10.

Programming

Programming for DC Motor speed control is similar enough to dimming an LED that you
can use the same code for both. Here’s the basic idea, in pseudocode:

Loop
'The ratio of the high pulse to the pause
' determines the value of the pseudo-analog voltage:
Pulse the motor or LED high
Pause with it Tow. End Toop

Following is a simple program to dim an LED or control the speed of a motor. You can
see that the values for pulsing differ from one microcontroller to the next. Remember, the
pseudo-analog voltage is the ratio of the on time to the off time (that is, the pulse to the
pause). Try changing the values of the pulse range and the pause to see what happens.

PBASIC ' The LED to be dimmed is on pin 7
period VAR Word

main:
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FOR period = 10 TO 10000 STEP 10
' pulsout 1 = 2 microseconds on the BS-2

' pulsout 1 = 0.5 microseconds on the ATOM:
PULSOUT 7, period
PAUSE 1
NEXT
GOTO main

PicBasic ' the LED to be dimmed on pin RC3.
Pro period var byte

output portc.3

main:
for period = 0 to 255
" pulse LED (pulsout 1 = 2 microseconds)
pulsout portc.3, period
' pause in microseconds;
' pause time gets longer as pulse gets shorter
' pauseus pauses for microseconds, not milliseconds:
pauseus 2*(255 - period)
next
goto main

(BX-Basic) ' the LED to be dimmed is on pin 12

dim period as single

Sub Main()
' because the period of the pulseout() command is
' data type single, we can't use a for-next loop
' to change its value:

do
if period < 0.01 then
period = period + 0.0001
else
period = 0.0001
end if
call pulseout(12, period, 1)
call delay(0.01 - period)
Toop
End Sub

Pulsing an output like this works fine when that’s the only thing your program is doing.
But when you add code to read inputs or control other outputs, you'll see that the pulse
output gets choppy. There are other commands that you can use for pulsewidth modulation
(PWM). The PWM commands in Mbasic and PicBasic Pro and the PutDAC() and DACPin()
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commands on the BX-24 output a train of several pulses at a time, and allow you to set

the duty cycle of the pulses. Additionally, all of the microcontrollers except the BS-2 have
hardware built in that can produce a hardware PWM signal, which runs continuously. Look
into the HPWM commands in Mbasic and PicBasic Pro, and the multitasking commands
on the BX-24 for more on this.

Generating Tones

The output from a pin of the microcontroller is just barely strong enough to drive a small
speaker. You won't hear these devices used on stage at Carnegie Hall, but they are useful
as a tool for user interface. They also further illustrate the idea of using digital pulses over
time to create analog signals.

Circuit
You can connect a speaker with a couple of capacitors and resistors, as shown in Figure 6.14.

Figure 6.14 "
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The tones from the microcontroller are not amplified, however, so you may have difficulty
hearing them. For better sound, wire your microcontroller to an audio jack so you can
connect its output to the input of an amplifier. Figure 6.15 shows the circuit you need.

Figure 6.15 v
Connecting an audio 1KQ 1KQ female stereo

mini jack
jack for sound output. to microcontroller !
This circuit can also be freqout pin . .
or

used with a speaker. 1pf 1pf
/‘\ /‘\ 8() speaker

Programming

The microcontrollers you're working with have a command, freqout, which allows you to
generate a tone from any of the I/O pins. When a speaker or amplifier is connected properly to
the pins, the tone can be heard. In pBasic, mBasic, and PicBasic Pro, the syntax is as follows:

Freqout pin, duration, Freql, freq2
On the BX-24, the syntax is different, but the parameters are the same:
Call FreqOut(Pin, Freql, Freq2, Duration)

P Pin is a byte variable, the pin on which you want to generate the tone.
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P Freql and Freq2 are the frequencies you want to generate. Units are in cycles
per second, or Hertz (Hz). Human hearing extends from 20 to 20,000 Hz, so
with an integer (whose values can be as high as 32,767), you can generate
tones higher than the human ear can hear. Two tones can be generated
at the same time. To generate a single tone, use the same tone for both
frequency parameters or make the second frequency double the first. In
pBasic, mBasic, and PicBasic Pro, these parameters take a word variable in
milliseconds. In BX-Basic, they’re integers.

P> Duration is the duration of the tone. In pBasic, mBasic, and PicBasic Pro, it’s
a word variable in milliseconds. In BX-Basic, it’s a single precision floating
point. It can range from 1 millisecond to about 2.56 seconds. Your program
will not do anything else for that period of time.

Programming for freqout is very simple. Simply call the freqout command as written above.
This example takes input from an analog input and plays a variable pitch sound.

This example also uses a new variable construct called an array. An array is just a variable
with many numbered compartments. The useful thing about arrays is that the values in
these compartments can be pulled out by the number of the compartment they’re stored in.
For example, you might store a list of 5 bytes in a byte array called myList. To see the second
byte, use the following syntax:

SecondByte = myList(1)

Confused? Remember when we said that a byte variable could range from 0 to 2557 Just as
variable values start with 0, most programming languages start array values from 0 as well.
So the first element in your array is myList(0). Of all of the versions of BASIC shown here, only
BX-Basic will let you start numbering arrays from a number other than 0. It takes some getting
used to when you've been raised to count from one, so be careful when using arrays. You can
also use another variable to determine which element of an array you want to access, like so:

myList(whichCompartment)

This makes an array into a sort of super-variable. Because arrays are lists of numbered
things, they are quite often used in connection with for-next loops, which do things multiple
times while automatically incrementing an index variable. Just like regular variables, arrays
have a type and a size and must be declared. See the following examples for details.

PBASIC ' declare an array of 10 word variables:

pitch var word(10)

' declare other variables:
note var byte

' the 10 elements of the array called pitch are 10 notes of a scale.
' The BS-2 doesn't have enough memory for all 12 notes:

pitch(0) = 262 ' middle C
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pitch(l) = 277 " C#
pitch(2) = 294 ' D
pitch(3) = 311 " D#
pitch(4) =330 ' E
pitch(5) = 349 ' F
pitch(6) = 370 ' F#

pitch(7) =392 ' G
pitch(8) = 415 ' Gf
pitch(9) = 440 " A

main:
For note = 0 to 9
freqout 7, 1000, pitch(note), pitch(note)
next
goto main

PicBasic ' declare an array of 12 word variables:
Pro pitch var word(12)

' declare other variables:
note var byte
thisNote var word

' the 12 elements of the array called pitch are the 12 notes of a scale:

pitch(0) = 262 ' middle C
pitch(l) = 277 " C#
pitch(2) = 294 "D
pitch(3) = 311 " D#
pitch(4) = 330 "E
pitch(5) = 349 " F
pitch(6) = 370 ' F#

pitch(7) = 392 "G
pitch(8) = 415 ' Gf
pitch(9) = 440 ' A
pitch(10) = 466 ' A#
pitch(1l) = 494 ' B

main:
For note = 0 to 11
' so we put the pitch into a normal word variable:
thisNote = pitch(note)
' play note:
freqout portc.4, 1000, thisNote, thisNote
next
goto main
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(BX-Basic) ' declare an array of 12 integer variables:

dim pitch (0 to 11) as integer

Sub Main()
' note is a variable you're using
as a for-next Tloop counter, so it has to be
' declared inside the main subroutine:
dim note as byte

' the 12 elements of the array called pitch are the 12 notes of a scale:

pitch(0) = 262 ' middle C
pitch(1) = 277 " C#
pitch(2) =294 ' D
pitch(3) = 311 ' D#
pitch(4) =330 ' E
pitch(5) = 349 ' F
pitch(6) = 370 ' Ff

pitch(7) =392 ' G
pitch(8) = 415 ' G
pitch(9) = 440 ' A
pitch(10) = 466 ' Aft
pitch(1l) = 494 ' B

do
For note = 0 to 11
call freqout(13, pitch(note), pitch(note), 300)
next
Toop
End Sub

There are a few factors to consider in working with freqout.

First, when the freqout command is being executed, nothing else happens. In other words, if
you give freqout a duration of one second, then the microcontroller won’t read your sensors
for that full second. The shorter you play the sound, though, the worse it will sound. So it’s
up to you to balance the quality of sound with the speed of reaction to sensors.

Second, if you're intending to make musical sounds, you must play frequencies that match
the musical pitch of the notes you want to play.

RC Servo Motors

Perhaps the most exciting thing you can do as analog output is to control the movement of
something. With ordinary DC motors, you can control whether or not they are on or off, and
the speed, but controlling the direction or position takes more work and more components.
RC servo motors have built into them the components needed to control the motor’s position.
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Inside the servo is a combination of gears and a potentiometer with some circuitry that
allows you to set its position fairly quickly and precisely and within a 180-degree range of
travel. RC servos are also relatively strong, considering that they can be powered by the same
+5 volts power supply that drives your microcontroller. Although the motion is basically
circular, you can add mechanical linkages to create linear motion as well. These motors are
most commonly used to control the flaps of radio-controlled planes and boats, but for us,
they are the first choice for moving almost anything small in physical computing.

Figure 6.16
RC servo motor.

Circuit

RC servos are very easy to control. They have three wires: power (+4 to 6 volts, 150 to 200
milliamps), ground, and control. Connect the +5 volt directly to a 5 volt power source that

can supply at least one amp of current. Don’t use the 5 volt output pin of your microcontroller;

it hasn’t got enough power. Connecting it to the same power feed before it reaches your
microcontroller will work as long as that source is in the 4 to 6 volt range and can supply up

to 200 milliamps of current. If you need a separate power supply for the servo motor, join the
grounds of the two power supplies. Finally, attach the control pin to a pin on the microcontroller.

Programming
To set the angle of the motor, the microcontroller will send pulses on the pin attached
to the motor’s control wire. The servo expects a 5-volt positive pulse between 1 and 2
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Figure 6.17 +5V (red)
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milliseconds (ms) long, repeated about 50 times per second (every 20 milliseconds). The
duration of the pulse corresponds to a given angle of the motor. Different servos will vary,
but for most servos 1-ms pulses will take them to one extreme of their travel, 1.5-ms pulses

will take them to the center, and 2-ms pulses will take them to the other extreme. You

have to send a given pulse to the motor every 20 milliseconds repeatedly, even if you don’t
want it to move, to keep it in one position. You'll find that with each servo, the minimum
and maximum pulsewidths change a few microseconds. When you get a new servo, test its
range with a simple program like the ones below, and adjust the pulsewidths as needed.

Here’s the pseudocode:

Set the increment in pulse width for movement of one degree
Set the minimum pulse width for beginning of the travel

Loop:
Loop between positions 0- 180

calculate the pulsewidth that corresponds to that position

Send that pulse to the servo
Delay until servo needs another pulse
End Toop
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DEecoOUPLING CAPACITORS: STABILIZING YOUR VOLTAGE REGULATOR

Servo motors, like other motors, are inductive loads (see the “Inductive versus Resistive Loads”
sidebar, earlier in this chapter), and their blowback voltage will affect your voltage regulator. One way
to help minimize this problem is to put capacitors between power and ground on either side of the
regulator. These are called decoupling capacitors. They smooth out the power, as the motor will cause
spikes and dips when it turns on and off. Put a 1-microfarad capacitor between the +5 volt output and

ground, and a 10-microfarad capacitor between the input and ground. It should look like Figure 6.18.

Figure 6.18

7805 voltage regulator

with decoupling +9t0 15V +5V

capacitors. (input) (output)
7805

10nF 1uF

The data sheets for the 7805 voltage regulator actually calls for decoupling capacitors to be used always.
We’ve been using them for microcontrollers for years without the decoupling capacitors without many
problems, but if you've got them at hand, it can’t hurt and it might help your application, particularly if it

involves an inductive load such as a motor or solenoid (more on those in Chapter 9).
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And here’s the code. Each microprocessor has a different minimum pulsout time, so the
code is different for each one. Try modifying the minAngle and maxAngle constants to see how
it affects your servo’s range:

( PBASIC )

' the servo is on pin 7.

angleVar var word
' set up constants with the minimum and maximum pulse widths
minAngle con 250

maxAngle con 1250

' set up a constant with the time between pulses:
refreshPeriod con 20

' set an initial pulsewidth:
angleVar = minAngle

main:
'take the output pin low so we can pulse it high
Low 7
' pulse the pin
PulsOut 7, angleVar
' pause for as long as needed:
pause refreshPeriod
' change the angle for the next time around:
if angleVar > maxAngle Then
angleVar = minAngle
else
angleVar = angleVar + 1
endif
GoTo main

( MBasic )

' the servo is on pin 7.

angleVar var word
' set up constants with the minimum and maximum pulse widths
minAngle con 1200

maxAngle con 5000

' set up a constant with the time between pulses:
refreshPeriod con 20

' set an initial pulsewidth:
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angleVar = minAngle

main:
'take the output pin low so we can pulse it high
Low 7
' pulse the pin
PulsOut 7, angleVar
' pause for as long as needed:
pause refreshPeriod

' change the angle for the next time around:
if angleVar > maxAngle Then
angleVar = minAngle
else
angleVar = angleVar + 1
endif
GoTo main

PicBasic ' the servo is on pin C3
Pro

' note: if you use a crystal other than 4MHZ,

' it changes the pulsewidth of pulsout.

' For a 20MHZ crystal, for example, pulsout is five times as
' fast, so you'd need to multiply the pulse widths by 5

' with a 20 Mhz crystal.

DEFINE 0SC 4
angleVar VAR word

' set up constants with the minimum and maximum pulse widths
minAngle con 50
maxAngle con 250

' set up a constant with the time between pulses:
refreshPeriod con 20

' set an initial pulsewidth:
angleVar = minAngle

main:
'take the output pin low so we can pulse it high
Low portc.3
' pulse the pin
PulsQut portc.3, angleVar
' pause for as long as needed:
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pause refreshPeriod

' change the angle for the next time around:
if angleVar > maxAngle Then
angleVar = minAngle

else
angleVar = angleVar + 1
endif
GoTo main
(BX-Basic) ' the servo is on pin 12.

Const minPulse as single = 0.0006 ' the minimum pulseWidth
Const maxPulse as single = 0.0023 ' the maximum pulseWidth
Const refreshPeriod as single = 0.02 ' the time between pulses

dim pulseWidth as single ' the servo's pulsewidth

Sub main()
pulseWidth = minPulse
do

pulse the servo:
call pulseOut(12, pulseWidth, 1)

' increase the pulsewidth for the next pulse:
if pulseWidth <= maxPulse then
pulseWidth = pulseWidth + 0.00001
else
pulseWidth = minPulse
end if

' wait 20 milliseconds before pulsing again
call delay(refreshPeriod)
Toop
End Sub

From Analog In to Analog Out: Scaling Functions

In converting the range of an analog input to an analog output, it’s necessary to know the
maximum and minimum values of each range so that a ranging function can be made up.
Some ranging functions are very simple multiplications, and some take a little more work.

Ultimately your analog inputs will return an idiosyncratic range of numbers. The range
will vary depending on many factors, such as the brand of transducer, the values of the
resistors and capacitors in your circuit, quality of your microcontroller and the time of
day. To use these numbers you will have to know the range your output device needs and
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convert the input range into that range. Usually this just requires some simple math. The
first step is to empirically find the input range and the output range.

To learn the range of an analog input sensor you have to run the simple program shown
above in the analog input section that just prints the input value out using a debug statement.

Adjust the transducer, trying to run it through its full range. Try to account for future
changes in ambient conditions; for example, with a photocell, more light will come in the
window during the day than at night. Study the incoming numbers to find the maximum
and minimum.

The output range is quite often dictated first by the parameters that a function call can
take. For example, a freqout command might expect numbers between 20 to 20,000. If
we're sending information using serial communication, we try to stay within a range from
0 to 255, because we like sending data one byte at a time. The particular device you are
talking to might require an even more specific range. To learn the output range of a servo,
for example, you can use trial and error, starting with the standard 1 and 2 millisecond
endpoints and adjusting the extremes of the pulsewidth until the motor doesn’t move as
expected. Servos being pulsed outside their range will typically move to the end of the
range and shudder. Reduce the extreme end of the range until the shuddering stops.

Once you know the input range of your sensor and your desired output range, you can
often use a fairly simple formula to convert from one to the other. For example, if your
sensor ranges from 500 to 1500 and your output needs a range from 0 to 500, you subtract
500 and divide by 2.

What you’ve just done is to create a formula called a scaling function or ranging function.
Let’s take a slightly more difficult case and make a general formula for what you’re doing.
In this example, your input is a variable resistor, and your output is a servo. Let’s say we
get an input range from 30 to 500. You know that if you look at the two ranges side by side,
you want to match them up, like this:

N
o
o
o
[6)]
o
o

Input Output
total range: total range:
1000 470

je——sensorValue ———— >

-

|
|
|
8 le— pulseWidth

o
W
o
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So we know that

(PulseWidth — min. pulse) _ (SensorValue — min. sensor value)

pulseRange sensorRange

You can rearrange this to get the pulsewidth. First, multiply both sides by pulseRange:

(SensorValue — min. sensor value) x pulseRange

(PulseWidth — min. pulse) =
sensorRange

Then add the minimum pulse to both sides, like so:

(SensorValue — min. sensor value) x pulseRange
sensorRange

PulseWidth =

+ min. pulse

That’s it. It seems a bit more complex than the first example, but it’s the same thing, only
more generalized.

There are a couple of things to keep in mind about math on a microcontroller. Most
microcontrollers can only deal with integer division. This can create rounding problems. For
example, if your output range is 1 to 100 and your input range is 1 to 75, you would ideally like
to scale your inputs by 100/75 or multiply them by 1.3. In systems that only do integer division,
like all of our microcontrollers except the BX-24, 100/75 returns 1, not 1.3. You could either
accept the 1 to 75 range, or multiply by 13 and then divide by 10. If you do the latter, you'd
need to use a word or integer size variable because youll be handling numbers greater than 255
(for example, 75 x 13 = 975 before you divide by 10 to get 97.5, which gets truncated to 97).

Even if you are very careful determining your input ranges, there is often a fluke reading now
and again that falls outside the observed range (unless the range is the full range of the ADC).
After determining the expected range, you should ensure that the incoming values never fall
outside that range, by using if statements or min/max statements. If you don’t, you'll see that
bytes do not respond gracefully to being given values above 255 or below 0. They roll over, so
that 256 becomes 0, 257 becomes 1, and so forth. Likewise, —1 becomes 255, —2 becomes 254,
and so forth. Had you used a byte variable in the example above, 75 x 13 would equal 207!
Why? 975 is (3 x 256) + 207. The byte variable rolled over four times and ended at 207.

suonouny Suijeds

When you use division to scale down a number, you are losing resolution. Sometimes this
is desirable for smoothing erratic readings, but other times it makes your application feel
chunky. On the other hand, multiplying to increase the range does not really increase

the resolution. When possible, try to find ways to avoid scaling, or scale as smoothly as
possible using an accurate ranging function.

When you're building the input circuit yourself from one of the examples above, you can
simplify these functions by choosing the right components. For example, if you’re using
the rctime function, try using a smaller capacitor and resistor, because the capacitor will
charge and discharge faster, meaning you get a lower range of numbers. In the PBasic and
MBasic examples below, the resistor and capacitor values are listed. Try different ones to
see what happens. If you're using an ADC circuit with a variable resistor, try a different
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base resistor. In the PicBasic Pro and BX Basic examples below, changing the base resistor
gave a much easier range to work with.

Below is a typical use of ranging functions. The input is a flex sensor, and the output is a
servo motor. Flexing the sensor through its range moves the servo through its range. You
know you can change the flex sensor’s range by changing the components around it, but

the servo motor has a fixed range. First, get the flex sensor’s readings as an analog input

and try different resistor and/or capacitor values until you get a range that’s easy to work
with. Then apply the formula. Here’s the pseudocode:

Loop:
Read sensor
Convert its value to a value in the range of the servo
Pulse the servo

End Toop

And here’s the actual code:

( PBASIC ) ' This example uses pin 0 for the analog input (flex sensor)

the servo is on pin 2.

set up constants with the minimum and maximum values you get from the sensor.
Before you can set these constants, you will have to

determine what they are by experimentation

In this example, a flex sensor (50 - 100K) was used with

a 0.01 capacitor and a 10-Ohm resistor:

minSensorReading CON 5

maxSensorReading CON 130

' a variable to hold the range:

sensorRange VAR Word

SensorRange = maxSensorReading - minSensorReading

set up constants with the minimum and maximum pulse widths
minAngle CON 250

maxAngle CON 1250

' a variable to hold the range:

angleRange var word

angleRange = maxAngle - minAngle

' set up a constant with the time between pulses:
refreshPeriod CON 20

RCVar VAR Word ' the raw sensor value
scalerVar VAR Word ' the scaling factor
angleVar VAR Word ' the servo's pulsewidth
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pause 500 ' wait 0.5 seconds

Main:
HIGH 0
PAUSE 1
RCTIME 0,1,RCVar
' this is a good place to debug your sensor value for testing:
' DEBUG "RCVar: ", DEC RCVar, 10, 13

' here is the application of the scaling function.
scalerVar = (angleRange / sensorRange)

angleVar = (RCVar - minSensorReading) * scalerVar
AngleVar = angleVar + minAngle

' this is a good place to debug your angle value for testing:
' DEBUG "AngleVar: ", DEC angleVar, 10,13

'min and max limits in case an input value strays from the range
IF angleVar > maxAngle THEN
angleVar = maxAngle
ENDIF
IF angleVar < minAngle THEN
angleVar = minAngle
ENDIF
' pulse the servo:
LOW 0
PULSOUT 2, angleVar
' wait 20 milliseconds:
PAUSE refreshPeriod
GOTO main

131

( MBasic )

' This example uses pin 0 for the analog input (flex sensor)
the servo is on pin 2.

Before you can set these constants, you will have to
determine what they are by experimentation

" In this example, a flex sensor (50 - 100K) was used with
' a 0.01 capacitor and a 10-Ohm resistor:

minSensorReading CON 5

maxSensorReading CON 130

' a variable to hold the range:

sensorRange VAR Word
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SensorRange = maxSensorReading - minSensorReading
' set up constants with the minimum and maximum pulse widths
minAngle CON 1200

maxAngle CON 5000

' a variable to hold the range:

angleRange var word

angleRange = maxAngle - minAngle

' set up a constant with the time between pulses:
refreshPeriod CON 20

RCVar VAR Word ' the raw sensor value
scalerVar VAR Word ' the scaling factor
angleVar VAR Word ' the servo's pulsewidth
pause 500 ' wait 0.5 seconds
Main:

HIGH 0

PAUSE 1

RCTIME 0,0,RCVar
' this is a good place to debug your sensor value for testing:
' DEBUG "RCVar: ", DEC RCVar, 10, 13

' here is the application of the scaling function.
scalerVar = (angleRange / sensorRange)

angleVar = (RCVar - minSensorReading) * scalerVar
AngleVar = angleVar + minAngle

' this is a good place to debug your angle value for testing:
' DEBUG "AngleVar: ", DEC angleVar, 10,13

'min and max limits in case an input value strays from the range
IF angleVar > maxAngle THEN
angleVar = maxAngle
ENDIF
IF angleVar < minAngle THEN
angleVar = minAngle
ENDIF
' pulse the servo:
LOW 0
PULSOUT 2, angleVar
' wait 20 milliseconds:
PAUSE refreshPeriod
GOTO main
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PicBasic
Pro

' the servo is on pin RC3
' the sensor is on pin RAO
DEFINE 0SC 4

' Set Debug pin port

DEFINE DEBUG_REG PORTC

' Set Debug pin BIT

DEFINE DEBUG_BIT 6

' Set Debug baud rate

DEFINE DEBUG_BAUD 9600

' Set Debug mode: 0 = true, 1 = inverted
DEFINE DEBUG_MODE 1

' Define ADCIN parameters

DEFINE ADC_BITS 10 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)

DEFINE ADC_SAMPLEUS 20 ' Set sampling time in uS
ADCVar var word ' the raw sensor value

angleVar var word ' the servo's pulsewidth

scalerVar var word ' the scaling factor

before you can set these constants, you will have to
determine what they are by experimentation.

read the sensor as an analog input, then change the base
resistor until you get a range you Tike.

In this example, a flex sensor (50 - 100K) was used with
a 1K base resistor:

minSensorReading con 5

maxSensorReading con 110

a variable to hold the range:

SensorRange var word

SensorRange = maxSensorreading - minSensorReading
' set up constants with the minimum and maximum pulse widths.

' test your servo alone to see if these ranges work best for you.
minAngle con 50

maxAngle con 250

' a variable to hold the range:

angleRange var word

angleRange = maxAngle - minAngle

set up a constant with the time between pulses:
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refreshPeriod con 20

TRISA = %11111111 ' Set PORTA to all input

ADCON1 = %10000010 ' Set PORTA analog and right justify result
Pause 500 ' Wait .5 second

main:

' read ADC channel 0:

adcin 0, ADCVar

' this is a good place to debug your sensor value for testing:
'debug "ADCVar: ", DEC ADCVar, 13,10

'here is the application of the scaling function:

angleVar = ((ADCVar - minSensorReading)* angleRange)

angleVar = angleVar / sensorRange

angleVar = AngleVar + minAngle

' this is a good place to debug your angle value for testing:
' debug "AngleVar", DEC angleVar, 13, 10

'apply max and min limits in case an input value strays from the range
if angleVar > maxAngle then
angleVar = maxAngle
endif
if angleVar < minAngle then
angleVar = minAngle
endif

pulse the servo:

Low portc.3
PulsQut portc.3, angleVar

' wait 20 milliseconds before pulsing again:
pause refreshPeriod
GoTo main

(BX-Basic) ' This example uses pin 13 for the analog input

the servo is on pin 12.

' set up constants with the minimum and maximum values you get from the sensor
' before you can set these constants, you will have to

' determine what they are by experimentation.

' read the sensor as an analog input, then change the base

resistor until you get a range you Tike.
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" In this example, a flex sensor (50 - 100K) was used with
' a 1K base resistor:

Const minSensorReading as integer =5

Const maxSensorReading as integer = 110

' a variable to hold the range from min to max:

Dim sensorRange as integer

' set up constants with the minimum and maximum pulse widths.

' test your servo alone to see if these ranges work best for you first:
Const minAngle as single = 0.0006

Const maxAngle as single = 0.0023

' a variable to hold the range from min to max:

Dim angleRange as single

Const refreshPeriod as single = 0.02 ' the time between pulses

dim angleVar as single ' the servo's pulsewidth
dim ScalerVar as single ' the scaling factor
dim ADCVar as integer ' for the raw sensor reading

Sub main()
' set the angle range and sensor range from the constants:
angleRange = maxAngle - minAngle
sensorRange = maxSensorReading - minSensorReading

call delay(0.5) ' start program with a half-second delay

do
ADCvar = getADC(13)
' this is a good place to debug your sensor value for testing:
'debug.print "ADCVar = " ; cstr(ADCVar)

'here is the application of the scaling function:
scalerVar = angleRange/csng(sensorRange)
angleVar = csng(ADCVar - minSensorReading) * scalerVar + minAngle

' this is a good place to debug your angle value for testing:
'debug.print "AngleVar = " ; cstr(angleVar)
' apply max and min Timits in case
'an input value strays from the range
if angleVar > maxAngle then

angleVar = maxAngle
end if
if angleVar < minAngle then

angleVar = minAngle
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end if

' pulse the servo:
call pulseQut(12, anglevVar, 1)

' wait 20 milliseconds before pulsing again
call delay(refreshPeriod)
Toop
End Sub

Conclusion

Nearly every physical computing project will use some combination of analog inputs or
outputs. Your first step should be to identify the input and output needs of your project,
and then categorize them as analog or digital. Use this section first to get all your inputs
and outputs to work on their own, and then integrate them using ranging functions.

Once you’ve worked out the scaling function, keep the program that does it on hand as a
separate, small program for debugging purposes, and copy the code from it into your larger
program as needed.
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Communicating between
Computers

While it’s possible to realize many physical computing projects with only a microprocessor
running the whole show, it’s more common to use a couple of computers, each a specialist
for a different part of your project. One of the most common configurations for physical
computing systems is to have a microcontroller read a sensor, and then send the value of
the sensor to a multimedia computer. The multimedia computer then changes the playback
of a video or the pitch of a sound, or activates some other multimedia response. The
reverse of this configuration is also common. For example, a multimedia computer sends
the coordinates of the mouse to the microcontroller to position a motor. In some cases, the
microprocessor may be controlling a video or audio mixer, a servo motor controller board, a
MIDI synthesizer, or some other specialized device. In any application where it’s necessary
to make one computer talk to another, the most common (and usually the easiest) method
is to use serial communication.

In serial communication you send digital pulses one after another back and forth between
computers. There has to be agreement on both sides regarding the physical connections
over which the pulses travel. There also has to be agreement about the rate, the voltage,
and the grouping of these pulses. A protocol is the set of parameters that the two devices
agree upon in order to send information. There are many different protocols for serial
communication, each suited to a different application.

One of the most common serial protocols is the RS-232 serial protocol. An RS-232 serial port
is found on most multimedia computers because prior to USB (Universal Serial Bus, another
more complicated serial protocol), most personal computers used RS-232 to communicate
with modems, printers, and other devices. Even if your multimedia computer doesn’t have an
RS-232 serial port, it can be outfitted with one by using a USB-to-serial adaptor.

Another protocol, called TTL serial, is used to talk directly between microcontrollers.
These two protocols, RS-232 and TTL, are similar enough (see the “Electrical Agreement”
section below) to make communication between microcontrollers and multimedia
computers relatively easy. This chapter will cover everything you need to know to

make this connection happen so the sensors on your microcontroller can control your
multimedia machine and vice versa.
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There are other things besides a multimedia computer that you might want your
microcontroller to talk to: for example, a video switcher, a sound synthesizer, a video
camera, a DVD player, a distant multimedia computer, or another IC chip. There are also
many different protocols for these applications: Midi, DMX-512, X10, USB, RS-485, UDP/
IP, TCP/IP, and so on, We will cover some of these other communications methods in the
second part of this book. For now the RS-232 and TTL protocols are going to give you the
ability to communicate between more computers sooner than any of these others.

Physical Agreement

The first step in mastering serial communication is making the physical connection
between the two computers. The easiest way to do this is to use a 9-pin serial cable, like
the one you used to program the computer, and a serial connector like the one you built in
Chapter 3.

NOTE

What about wireless?

In Chapter 12, “More Communication between Devices,” we’ll discuss options for
creating wireless connections between computers, but we strongly recommend that
you get your application working first with a wired connection, and only then get
into wireless solutions. It’s much easier to troubleshoot a wireless connection when
you know you’ve gotten all the other details correct using a wired connection.

When you connected the microcontroller to the multimedia computer to program it, you
used the multimedia computer’s serial port. If your computer doesn’t have a serial port,
you probably used a USB-to-serial adaptor. In either case, you're already familiar with the
physical connection to your multimedia computer. If you have two serial ports on your
multimedia computer, you can continue to use one for programming and use the second for
serial communication by getting a second cable and making a second serial connector.

NOTE

Macintosh users, this is the part of the book you've been waiting for. Though
programming a microcontroller is an activity limited to the Windows platform, serial
communication can occur between microcontrollers and Windows PCs, Macs, Linux
machines, or any other multimedia computer with a serial port. Unless your Mac was
made before 1999, you’ll need a serial-to-USB adaptor (we recommend the Keyspan
USA19HS); but once you’ve got one, your Mac and your microcontroller can begin
chatting away.

Serial cables appear to have lots of wires and pins, but you'll only use three of them: one wire for

sending electrical pulses, another for receiving the electrical pulses, and a third for a common

ground so each device has a reference point for the voltage level at which the other is sending

data. Which pin does which job is the first of the agreements that has to be made in order to

facilitate serial communication. See Figure 7.1 for the pinouts of a typical DB-9 style serial port.
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Figure 7.1 9 8 7 6
A DB9-style serial 00 O
connector, showing the Looking at the back of the connector

pin numbers for serial O O O O O
communication.

Ground
Microcontroller receive (PC transmit)

Microcontroller transmit (PC receive)

The extra pin on your serial connector, pin 4 in Figure 7.1, is used by the programming
environment only, as a way to get the microcontroller’s attention during programming. It’s
not used for what we’re doing in this chapter. Nevertheless, you can use a serial connector
just like the one you built for programming a Stamp-like module for serial communication
and just leave that pin unattached.

The next step is to decide which of the microcontroller’s I/O pins will be used for serial
communication. If you look at a diagram of a Stamp-like microcontroller, you might be
tempted to use the pins in the upper left that are labeled TX, RX, and GND. These labels
stand for transmit, receive, and ground. This is a serial port, and it’s already set up to speak
the RS-232 protocol, but it’s most convenient to reserve this port for programming the chip.
You can arbitrarily pick any I/0 pins and assign them in software as the RX pin (where the
microcontroller receives data) or the TX pin (where it sends data to the multimedia computer).
You can connect the ground wire to the ground strip on the side of your prototyping board.

Write down which pins you assign for RX and TX because you’ll need to know it when
you write software for serial communication. The biggest mistake that people make at
this point is to connect their TX pin of the multimedia computer to their TX pin of their
microcontroller and the RX to the RX. This does not make for a very good conversation.
The TX pin of the microcontroller should be connected to the RX pin of the multimedia
computer, and vice versa.

PICs and other lower-level microcontrollers may have I/O pins noted in their pin diagrams
as RX and TX. This means that they’ve got a built-in serial receiver-transmitter assigned to
those pins. If you were programming the PIC in its low-level assembly language, this would
make your life much easier. When you’re using our programming examples in PicBasic
Pro, this doesn’t make a significant difference, and you can use any pins that you wish.
However, it’s good form to use them anyway, which we’ll do in our examples.

Timing Agreement

The next level of agreement is the timing of the pulses. This has to be set regardless of
what serial protocol you'’re using. To be able to count the pulses, there has to be agreement
about how fast they are coming. You will be using asynchronous serial communication, in
which both devices have their own separate clock to keep track of time!. The sender sends
pulses representing the data being transmitted at an agreed-upon data rate, and the receiver

1 Synchronous serial communication dedicates another connection between the two devices to send pulses that set the rate
of data transfer. Synchronous serial communication is common when talking to other IC chips. Only the controlling device
has a clock in synchronous serial communication. We will cover it in Chapter 12, “More Communication between Devices.”
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listens for pulses at that same rate. The timing of the pulses is called the data rate or the

baud rate. You’ll usually use a data rate of 9600 pulses per second. Typically you group 8

pulses together. This means that you could send one group of 8 pulses (also called a byte)
per millisecond, which is faster than human perception.

Electrical Agreement

After you make the physical connection, you have to agree on the voltage levels of

the electrical pulses you will be sending over them. As mentioned earlier, most of our
microcontrollers are using the TTL protocol, where pulses are either 5 volts or 0 volts.
But RS-232 uses —12 volts and 12 volts. The good news is that we have never encountered
a multimedia computer that could not understand the TTL voltage levels. However, the
voltage coming from a proper RS-232 port might be too much for your microcontroller.

If so, you should place a 22-kilohm resistor in the connection between the TX of the
multimedia computer and the RX of your microcontroller. All of the microcontrollers
discussed in this book should work fine without it, though.

After you decide on the voltage level of a pulse, you have to agree on the logic. With inverted
logic, a positive pulse signifies a 0 or false. With true logic, a positive pulse signifies a 1 or
true. This is another way that RS-232 and TTL differ. RS-232 uses inverted logic: —12 volts =
true, +12 volts = false. TTL uses true logic: 5 volts = true, 0 volts = false. This is rarely an issue
because your microcontroller’s serial commands can adjust the logic for you most of the time.

There are a few other, lesser details to the agreement. You have to decide on whether there
will be an extra pulse before or after the message (referred to as start bits or stop bits),
whether you will sacrifice one of the 8 pulses for parity error checking, and whether the 8
pulses are coming highest value first or lowest value first. The most common configuration
is 9600 bits per second, 8 data bits, 1 stop bit, no parity. You'll use this as your default. The
9600 bits per second rate is generally the only parameter that varies from this configuration.

Package Size

Finally, there has to be some agreement as to how the sequence of pulses is interpreted. By
interpreting them in groups of 8 (a byte), you can send numbers between 0 and 255. The
byte is the standard number of bits for storing data in a computer, so you’ll see it a lot. See
the “Variables” section of Chapter 5 to review this idea.

Serial data is passed byte by byte from one device to another. It’s up to the programmer to
decide how each device (computer or microcontroller) should interpret those bytes: when
the beginning of a message is, when the end is, and what to do with the bytes in between.

If you're only sending one changing number (perhaps the value received from an analog
sensor), and that number is less than 255, you know it can fit in a byte. This kind of message
is easy. Just send the same byte over and over, and the computer can pick it up at any time. If
you’re sending more than that (and you usually are), things are a little more complicated. The
receiving computer has to know when the message starts and when it ends.
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Different serial devices will use different codes to perform different actions. If a device, like a
tape deck or laser disk player, is serially controllable, there will usually be a section in its manual
outlining the messages it expects to receive and at what baud rates it expects to receive them.

Numbers or Letters: Using ASCII

Every grouping of pulses can be interpreted as a particular value by a computer and

stored using a series of 0s and 1s, as we explained in the “Variables” section in Chapter 5.
This is fine for communication between machines. If the machines ultimately have to
communicate with people, you will often want to represent the values of these bytes using
readable text instead of numbers. You need a way for the bits and bytes to be converted into
alphanumeric characters that people can read.

Fortunately, there is a standard system, called the ASCII? code, that assigns each text
character (letter, number, or punctuation mark) a specific value from 0 to 255. For example,
capital A is ASCII value 65. This chart can be found in many computer manuals’ indexes
and all over the Web. Table 7.1 lays it out for you.

Table 7.1

ASCII Chart
0 NUL 16 DLE 32 SP 48 O 64 @ 80 P 96 h 112 P
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 Q
2 STX 18 DC2 34 - 50 2 66 B 82 R 98 b 114 R
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 C 115 S
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 T
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 U
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 V
7 BEL 23 ETB 39 ° 55 7 71 G 87 W 103 g 119 W
8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 X
9 HT 25 EM 1 ) 57 9 73 1 89 Y 105 i 121 Y
10 LF 26 SUB 42 * 58 74 ] 90 Z 106 j 122 Z
11 VT 27 ESC 43 + 59 75 K 91 [ 107 k 123 {
12 FF 28 FS 44 60 < 76 L 92 \ 108 1 124 |
13 CR 29 GS 45 - 61 = 77 M 93 | 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 A 110 n 126 ~
15 SI 31 US a7 |/ 63 7 79 O 95 111 o 127 DEL

2 ASCII (American Standard Code for Information Interchange) is very common and used by many devices as part of their serial
protocol. As you can tell by the name, ASCII is biased toward English alphanumeric communication. It’s convenient in that

any ASCII symbol can be represented in one byte, but it’s also limited. Other alphanumeric systems with more characters than
the limited number in the Latin (English) alphabet are not represented in ASCII Other schemes will take more than a byte to
represent one character. An expanded code called Unicode, a superset of ASCII, is used to represent most of these character sets.
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Confusion sometimes pops up here because
there are two ways to send numbers between
computers. For example, if you get a sensor
reading of 12, you can send a byte with a
value of 12. This is sometimes called the raw
value, meaning that it’s not encoded using
ASCII or any other code. Or you can send a
string of two bytes of ASCII-encoded text,
“1” and “2” or “12.” You can send the reading
either way. All that really matters is that you
are consistent in your interpretation on the
receiving end. However, if you send the text
string as ASCII characters (“12”) and then
interpret it as a raw value on the receiving
side, you might think you had received two
sensor readings, 49 and 50, when you really
received one: the ASCII codes for “1” and
“2.” In general, sending things as a raw value
rather than as a text string is more efficient.
A single byte can contain any number
between 0 and 255. But when you send
things as text, it takes as many bytes as there
are digits. For example, “2” would still only
take one byte, but “22” would take two bytes
and “222” would take three bytes. At the
standard baud rate (9600, or one character
per millisecond) you are unlikely to feel this
inefficiency for just a couple of numbers.

Another point of confusion stems from
the fact that the first 32 entries in the
ASCII table are control characters,
which are invisible when interpreted as
text characters. Some of these invisible
characters, like the “carriage return”

HEXADECIMAL NOTATION

There is yet another system for sending a
number between 0 and 255. Numbers can be
converted to base 16, also called hexadecimal,
as opposed to the decimal system, which

is the normal base 10 counting system. In
hexadecimal, you have 16 digits. You use the
ten digits from base 10 (0 through 9), and then
use the letters A through F for a total of sixteen
possible values per digit. The hexadecimal
system uses two bytes to transmit a number
between 0 and 255 instead of the three you'd
need if you represent the number in base

10. For example, the decimal number 14 is
represented by the character E in hexadecimal.
The decimal number 156 is 9C in hexadecimal
(9 groups of 16, and 12 ones, represented by the
letter C). Counting in hexadecimal, you can
send the values from 0 to 255 with only two
ASCII characters (0 to FF) instead of the three
you'd need in decimal (0 to 255). See Charles
Petzold’s excellent book Code: The Hidden
Language of Computer Hardware and Software
(Microsoft Press, 2000) for a good explanation of
hexadecimal and other counting systems used

in programming computers.

(ASCII 13) and “line feed” (ASCII 10), are familiar to you from word processing. Some of
them, like “bell” (ASCII 7), are left over from the old teletype days. Sending these numbers
can cause confusion in environments that can only interpret text characters (see “Testing
with Terminal Software” below) because either nothing shows up, or you get a bunch of
garbage characters (squares, smiley faces, and other dingbat characters).

Software for the Microcontroller

Before you can do anything else, you need to be able to send and receive a byte. The
commands and syntax for doing this will be different for each microcontroller and each
different programming environment on a multimedia computer. The basic steps will be the
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same on each platform, though, so we’ve outlined them in pseudocode below. You'll start
by sending serial, then move on to receiving serial.

Serial Output from a Microcontroller

Here’s the pseudocode for the basic steps you'll take:

Set up a place to store incoming serial data

Set up a place to store outgoing serial data

Define which I/0 pins are to be used for serial TX and RX
Set the baud rate and other serial protocol parameters
Open the serial port

Loop:
Read sensors

Send data out
End Toop

NOTE

There’s a significant difference between the programming steps for BX-Basic and the
rest of the languages we’re using, so we’ll start by explaining serial output for pBasic,
mBasic, and PicBasic Pro, then revisit the ideas to explain in BX-Basic.

For all of our serial examples, you'll use the same pins. Remember, on the Stamp-like
modules the same physical pins have different names, depending on the platform. See
Figure 7.2 for how the serial connector connects to each.

Figure 7.2

Serial connections for
a Stamp-like module
and for a PIC 18F452.

139[|0UOd0NIW € wouy IndinQ [euss
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Pins Used for Serial Examples

MICROCONTROLLER TX RX
Basic Stamp 2 6 7

Basic Atom Pro24 6 7

PIC portC.6 portC.7
BX-24 11 12

PBASIC, MBasic, PicBasic Pro

In PBASIC, MBasic, and PicBasic Pro, many of the serial steps are included in one of

two commands: serin or serout. To set up a place for incoming data, you simply declare a
variable. To set up a place for outgoing data, you can declare another variable, or you can
send the literal data out. The I/O pins, baud rate, and serial protocols are set each time you
send or receive, in one command. The example below sends the message “Hello World” out
the serial port over and over.

PBASIC Main:
Serout 6, 16468, ["Hello World!", 10, 13]
Goto main

MBasic Main:
Serout 6, N9600, ["Hello World!", 10, 13]
Goto main

PicBasic | Main:
Pro Serout2 portC.6, 16468, ["Hello World!", 10, 13]
Goto main

Qe

NOTE

PIC users: there are several serial in and out options in PicBasic Pro. We’ll be using
serout2 and serin2, which we’ve found to be the most compatible with pBasic, and
the most stable. Wherever we refer to serin or serout in the general text, use serin2
and serout?.

The serout command (serout2 on the PIC) has three parameters: the I/O pin, the serial
configuration, and the data to be sent. The number 16468 is the serial communications mode
parameter. In MBasic, it’s replaced by a constant defined by the compiler. This particular value
sets the serial protocol for 9600 baud, 8 data bits, 1 stop bit, no parity, inverted logic. For details
on how to decode this number, see the manual for your microcontroller. You'll find the details
and some other common serial settings listed under the serout command.
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The brackets hold the actual data to be sent. Items to be sent out are separated by commas.
By putting the literal message in quotes, you tell the microcontroller to send each

letter’s ASCII value. Fourteen bytes are sent by the example above, one for each letter or
punctuation mark, and two for the numbers following the quoted phrase. Because those
numbers aren’t in quotes, the actual values 10 and 13 are sent in the last two bytes. If

you look up these values in the ASCII chart in Table 7.1, you'll see that the number 10
represents a line feed (LF) and the number 13 represents a carriage return.

If you want to send information from a sensor, put that information in a variable:

( PBASIC ) ' TX is connected to pin 6; switch is connected to pin 0

switchVar var byte
input 0

Main:

SwitchVar = in0

Serout 6, 16468, ["Hello World!", DEC switchVar, 10, 13]
Goto main

( MBasic ) ' TX is connected to pin 6; switch is connected to pin 0

switchVar var byte
input 0
Main:
SwitchVar = in0
Serout 6, N9600, ["Hello World!", DEC switchVar, 10, 13]
Goto main

PicBasic " TX is connected to pin C6; switch is connected to pin BO
Pro switchVar var byte

input portb.0

Main:

SwitchVar = portb.0

Serout2 portC.6, 16468, ["Hello World!", DEC switchVar, 10, 13]
Goto main

The instruction DEC in front of the switchVar variable in the serout command tells the
microprocessor to convert the variable’s actual value (which will be a 0 or a 1, since it’s
coming from the switch) to its ASCII representation (“0” or “1”). You might want to send a
message only if the switch is closed:

( PBASIC ) ' TX is connected to pin 6; switch is connected to pin 0

switchVar var byte
input 0
Main:
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SwitchVar = in0
If switchVar = 1 then
Serout 6, 16468, ["Hello World!", DEC switchVar, 10, 13]
endif
Goto main

( MBasic ) ' TX is connected to pin 6; switch is connected to pin 0

switchVar var byte
input 0

Main:
SwitchVar = in0
If switchVar = 1 then
Serout 6, N9600, ["Hello World!", DEC switchVar, 10, 13]
endif
Goto main

' PicBasic ' " TX is connected to pin C6; switch is connected to pin BO
Pro

switchVar var byte
input portb.0

Main:
SwitchVar = portb.0
If switchVar = 1 then
Serout2 port(C.6, 16468, ["Hello World!", DEC switchVar, 10, 13]
endif
Goto main

BX-Basic

The BX-24’s serial commands are slightly more complex than our other microcontrollers.
The place that you store incoming and outgoing data isn’t a simple variable, but a data
structure called a queue. Queues are very similar to arrays, which were discussed in
Chapter 6. BX-Basic also separates the serial configuration step from the sending step. This
means that there’s more code to write before your main loop.

The reason for this is that the BX-24 serial is buffered. This means that in a complex
program, you can have serial data coming in and going out while other things are going
on. This is not possible on the other microcontroller environments shown here. The two
queues are the input buffer and the output buffer. To imagine how they work, think of
peas rolling through a straw: the first byte in the queue is the first byte out the other end.
You put bytes in a particular sequence and receive them out the other end in the same
sequence. This is called first-in, first-out, and you’ll often see it abbreviated as FIFO. All
multimedia computers have FIFO buffers as well, so that they can keep the operating
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system running while using the serial ports. A queue in BX-Basic is an array that’s been set
up as an FIFO buffer.

In order to keep track of the order of the bytes in a queue, BX-Basic uses some of the bytes (9,
to be precise) assigned to the queue. So to define a queue, you give it an array of bytes that’s 9
bytes longer than you want the queue to be. To get a 1-byte queue, you give it a 10-byte array.

First you define two arrays that will be the input and output queues. Your input queue

in the example below is 9 bytes long and your output queue is 40 bytes long (the
corresponding queues will be 1 and 31 bytes long, respectively). They can be longer, if you
want them to be, but you’ll find it easier if they’re at least this long.

Once you've set up your buffers, you define which pins you’ll use for serial communication
and the communication parameters. The defineCom3() command defines a serial port on the
BX. It has three parameters: the RX pin, the TX pin, and the serial mode. The serial mode
defines the start bits, stop bits, parity setting, and logic, but not the data rate. The data rate
is set when you actually open the serial port using the openCom() command.

OpenCom() has four parameters: the first is the serial port you're opening the BX has two
serial ports, called COM1 and COM3 for arcane reasons. COM1 is always pins 1 and 2 of
the chip, and you’ll seldom use it. See the section on MIDI in Chapter 12 for details. The
second parameter is the data rate. The third and fourth parameters are the queues to use
for the input buffer and output buffer, respectively.

There are two commands you’ll use for sending serial data out, putQueue() and
putQueueStr(). You'll start with putQueueStr(). The putQueueStr() command has two
parameters: the queue you're putting the string in, and the string you're putting in it. Here’s
a “Hello world!” example:

(BX-Basic) ' TX is connected to pin 11

Dim InputVar(l To 10) As Byte
Dim OutputVar(l To 40) As Byte
Dim outputString as String

Sub main()
' turn the arrays into queues:
Call openQueue(Inputvar, 10)
Call openQueue(QutputVar, 40)

' define the TX and RX pins and the serial parameters
' (except for baud rate):

Call defineCom3(12, 11, bx1000_1000)

' open the serial port for sending and receiving at 9600 baud:
Call openCom(3, 9600, InputVar, OutputVar)

make a message to send
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OutputString = "Hello World!"™ & chr(10) & chr(13)

do
' put a string in the output queue to send:
Call putQueueStr(outputVar, outputString)
Loop
End sub

Sending a number variable is similar. However, instead of the putQueueStr() command, use the
putQueue() command. The putQueue() command has three parameters: the queue, the variable
you're putting in the queue, and the size of the variable. Note that since switchVar is a byte

variable, and the

values 10 and 13 both fit within a byte, youre sending one byte at a time.

NOTE

You cannot supply the putQueue () function with a literal like “3” or 3. You have to put
the data you want to send into a variable before giving it to the putQueue () function.

(BX-Basic) ' TX is connected to pin 11.

Dim
Dim
Dim

Sub

InputVar(l To 10) As Byte
QutputVar(l To 40) As Byte
switchVar as byte

main()

' turn the arrays into queues:
Call openQueue(Inputvar, 10)
Call openQueue(QutputVar, 40)

' define the TX and RX pins and the serial parameters
' (except for baud rate):

Call defineCom3(12, 11, bx1000_1000)

' open the serial port for sending and receiving at 9600 baud:
Call openCom(3, 9600, InputVar, OutputVar)

make a message to send

do
switchVar = getPin(12) + 48
' send it out the serial port:
call putQueue(OutputBuffer, thisByte, 1)
switchVar = 10
call putQueue(OutputBuffer, thisByte, 1)
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switchVar = 13
call putQueue(OutputBuffer, thisByte, 1)
Loop
End sub

TIP

Why did you add 48 to switchVar before you sent it out? It’s a quick way to convert
between a raw value and an ASCII interpretation for single-digit numbers. You know
that the getPin() command will give you a 0 or a 1. Because you're printing this out
to a terminal program that only interprets bytes as ASCII characters (more on this to
come), you want to see the text 0 or 1, not the raw values 0 or 1, which are invisible
control characters discussed in the section above, “Numbers or Letters: Using ASCIL.”
You know that the character 0 is ASCII value 48, and 1 is ASCII 49, so by adding 48 to
the values that you get from getPin(), you get the characters 0 and 1. Another reason
is that the 0 character is reserved by some software (like Flash’s XMLSocket) as an end
of transmission character. If it is this easy to avoid using it, you should do so.

Testing with an LED

At the electrical level, serial communication consists of a series of timed pulses of voltage
coming from the TX line of one computer to the RX line of the other. As a result, the most
basic test you can do to see that your microcontroller is sending serial data out is to put
an LED from the TX line to ground. If the LED lights up and appears to be blinking very
slightly, then you know you’re sending serial data out. The blinking is very slight because
it’s so fast; the LED is going on and off as fast as 9600 times per second. Once you’ve done
this test, be sure to remove the LED before moving on to the next step.

Testing with Terminal Software

Serial communication is harder to debug than anything you have done so far because

the problem could be in many different places: your microcontroller software or circuit,
the multimedia computer software or hardware, or the conduit between the two. Before
writing any custom software on the multimedia computer, it’s worth stopping now to test
your physical connection and the software on your microcontroller. You can do this by
using terminal software on your multimedia computer. Terminal software prints onto the
screen anything that comes in from the serial port and sends anything you type on the
keyboard out the serial port. There are many free or shareware versions of this software.
Zterm is our favorite on the Mac; it’s downloadable from many sites on the net (http:
//www.shareware.com is a good place to start). HyperTerminal comes with the Windows
operating systems; it’s usually found by clicking the Start menu, then choosing Start,
Programs, Accessories, Communications, HyperTerminal. You can also open it by clicking
on the Start menu, choosing Start, Run, then typing hypertrm (sic). In every terminal
program you’ll find a menu option for settings, properties, or preferences where you can
specify which serial port you want to use (for example, Direct to COM1 in HyperTerminal)
and with what configuration (9600, 1 stop bit, no parity, 8 data bits, no flow control).
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NOTE

One important fact to note about serial ports: A multimedia computer’s serial port
can only be controlled by one program at a time. If you have only one serial port
and your microcontroller program is running, then your terminal program may not
be able to use the serial port and will probably give you an error message. If this is
the case, quit both programs and open the terminal program again. It should now be
able to gain control of the serial port. Make sure that background programs that use
the serial port, such as modem software, PDA connection software (such as Palm’s
HotSync), and so forth, are not using the serial port either.

Run the examples above on your microcontroller. Connect the microcontroller’s serial
output to the serial port on the multimedia computer. Run the terminal program, and
you should see the output messages filling up the screen. This would be a good time for a
celebratory hokeypokey before moving on to serial input.

The main shortcoming of terminal programs is that they can only interpret bytes as ASCII
characters. If you are expecting your messages to be interpreted as numbers—for example,

if you're sending a number between 0 and 255 for a light sensor—it will appear as gibberish.
The values 0 to 31 may not appear at all because they are control characters in ASCII used for
screen formatting. Even gibberish, if it is consistent, can be reassuring at this point. It means
that your data is getting through but is not being displayed by the terminal program as you
want it to be displayed. You will fix that when you replace the terminal software with your
own software for the multimedia computer.

Serial Input to a Microcontroller

In pBasic, mBasic, and PicBasic Pro, the command to receive serial data from another
computer is called serin (serin2 in PicBasic Pro). As you can see from the examples below,
it’s very similar to serout. The parameters are the RX pin number, the baud mode, and the
variable into which you want to receive the data.

Run this program on your microcontroller. Each time you type a character into the
terminal program on your multimedia computer, you should see it appear in your
microcontroller’s debug window. In the other direction, the “A” being sent by your
microcontroller should appear in your terminal software’s window.

NOTE

This example requires that you have two serial ports, one for programming and
one for connecting your serial line. If you don’t have two ports, then close your
programming software and move the serial connection from your programming
pins to your serial pins once you've programmed the chip. You won’t see the debug
messages, but you will see the “A.”
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NOTE

PIC users: since the serout2 command is so simple, and since you can’t use the same
pins of your microcontroller for both serout?2 and debug, you’ll use serout? for all
debugging messages from here on out, instead of the debug command.

( PBASIC )

' TX is connected to pin 6. RX is connected to pin 7.

inFromSerialVar var byte

main:
SEROUT 6, 16468, ["A"]
SERIN 7, 16468, [inFromSerialVar]
DEBUG ? inFromSerialVar

GOTO main

( MBasic )

' TX is on pin 6; RX is on pin 7

inFromSerialVar var byte

main:
SEROUT 6, 19600, ["A"]
SERIN 7, N9600, [inFromSerialVar]
DEBUG [inFromSerialVar]

GOTO main

PicBasic
Pro

' TX is connected to pin C6. RX is connected to pin C7.

inFromSerialVar var byte

main:

SEROUT2 portc.6, 16468, ["A"]

SERIN2 portc.7, 16468, [inFromSerialVar]

SEROUT2 portc.6, 16468, ["I got: ", inFromSerialVar, 10, 13]
GOTO main

In BX-Basic, serial in is a bit more complex because of the serial buffers. It’s similar to
serial out in that you set up an input queue and get the data in from that queue. The serial
in commands are statusQueue() and getQueue(). StatusQueue() takes one parameter, the name
of the input queue. It returns true if there are bytes in the input queue. GetQueue() takes two
parameters, the name of the input queue and the number of bytes you want to get. It plucks
the first available byte off the queue and returns it. GetQueue() will not work if there are no
bytes available in the queue, so you put it inside an If statement that checks statusQueue().
This program will do the same as the above examples for the other microcontrollers. Each

TEAM LING - LIve, Informative, Non-cost and cenuine !

I3[j03u0d0.0IW € 0} Induj [euss



152 Part | - The Basics

time you type in a character on your multimedia computer’s keyboard, you should see it
appear in your microcontroller’s debug window. An “A” should appear in your terminal
software’s window as well.

( BX-Basic )

' TX is on pin 11; RX is on pin 12

Dim InputVar(l To 10) As Byte
Dim OutputVar(l To 40) As Byte
dim inData Asbyte

Sub main()
Call openQueue(Inputvar, 10)
Call openQueue(QutputVar, 40)
Call defineCom3(12, 11, bx1000_1000)
Call openCom(3, 9600, InputVar, OutputVar)
outData = 65

do
Call putQueue(OutputVar, outData, 1)
Call getQueue(InputVar, inData, 1)
' check to see if there is a byte in the input buffer;
if there is, get it with getQueue()
If statusQueue(inputBuffer) = true then
call getQueue(inputBuffer, inData, 1)
Call putQueue(outputBuffer, inData, 1)
Debug.print cstr(inData)
End if
Loop
End Sub

If this test works, then you’ve proven that your cable works and your microcontroller
software is running correctly. The hokeypokey may again be called for. Before testing any
of your own software that you write on the multimedia computer, you should always do
this simple test. The following could be the leading causes of failure at this point:

VY vV VVvVY

The pin numbers for TX or RX in the software are wrong.
You soldered to the wrong terminals of the serial connector.

Your connections on your serial connector are not soldered well, causing a
bad connection.

Your TX of one side is connected to the TX (instead of the RX) of the
other side.

You are plugged into the wrong port on your multimedia computer.

You have the settings wrong on the multimedia computer.
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Serial Freeze and Blocking Functions

Because you are using asynchronous serial communication (meaning that either device
can send data whenever it wants to), you never know exactly when data is going to arrive.
In order not to miss an incoming message, a microcontroller will usually have to dedicate
its undivided attention to the input pin. As a result, when a microcontroller is given a
command to receive serial data, it stops all other action until the requested amount of
data bytes are received. This is called a blocking function, meaning that all other action
is blocked until it’s done. It can be very useful for keeping your microcontroller and
multimedia computer synchronized. For example, if you are sending sensor readings to a
multimedia computer and you want to make sure it has processed the last set of readings
before you send a new set, you could send a set of readings and then wait with the blocking
function until you receive a byte back from the multimedia computer signifying that it is
ready for another (see the “Call and Response” section below).

Sometimes blocking functions are a problem, however, and you need the microcontroller
to keep running its program if no data comes in. You can do this using a timeout, which is
an option in the serial in command that says, “If you get no data in a certain time, go on to
something else.”

Here’s a variation on the serial testing code that uses a timeout. In this example, if no data

is received, the microcontroller sends back a period character (“.”), and if data is received,
the microcontroller sends back an “A”.

Note the extra parameters in the serin function below (10, noData). These parameters tell
the microcontroller that if it gets no serial data in after 10 milliseconds, then it should go to
the label noData. When it gets there, it sends back a period and goes back to the main label.
The serout command that sends the A is never run unless serin gets data.

( PBASIC ) ' TX is on pin 6; RX is on pin 7

inFromSerialVar var byte

main:
serin 7, 16468, 10, noData, [inFromSerialVar]
serout 6, 16468, ["A"]
debug ?inFromSerialVar
goto main
NoData:
Serout 6, 16468, ["."]
Goto main

( MBasic ) ' TX is on pin 6; RX is on pin 7

inFromSerialVar var byte

main:
serin 7, N9600, 10, noData, [inFromSerialVar]

TEAM LING - LIve, Informative, Non-cost and cenuine !

suonoung Supjoojg pue 9z334 [eLdS



154  Part1 - The Basics

serout 6, N9600, ["A"]
debug [inFromSerialVar]

goto main
NoData:
Serout 6, N9600, ["."]
Goto main
PicBasic ' TX is on pin C6; RX is on pin C7
Pro inFromSerialVar var byte
main:

serin portc.7, 16468, 10, noData, [inFromSerialVar]

serout2 portc.6, 16468, ["A"]

serout2 portc.6, 16468, ["I got: ", inFromSerialVar, 10, 13]
goto main

NoData:
serout2 portc.6, 16468, ["."]
Goto main

(BX-Basic) Dim Inputvar(l To 10) As Byte

Dim OQutputVar(l To 40) As Byte
dim outData As byte
dim inData Asbyte

=

Sub main()
Call openQueue(InputVar, 10)
Call openQueue(OutputVar, 40)
Call defineCom3(12, 11, bx1000_1000)
Call openCom(3, 9600, InputVar, OutputVar)

do
If statusQueue(inputVar) = true then
Call getQueue(InputVar, inData, 1)
QutData = 65 ' ASCII value for "A"
Debug.print cstr(inData)
Else
QutData = 46 ' ASCII value for "."
End if
Call putQueue(OutputVar, outData, 1)
Loop
End Sub
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Timeouts are particularly useful when the microcontroller has multiple time-dependent
tasks to perform. For example, let’s say you have the microcontroller running a servo motor
that’s moving your window blinds. The microcontroller gets a serial command from a
multimedia computer, and it repositions the blinds. But keep in mind, as you learned in
Chapter 6, servo motors need a pulse every 20 milliseconds, even if they’re not moving.
You could have the microcontroller listen for serial data in for 18 milliseconds, then if it
gets nothing, pulse the servo motor again and go back to listening for serial input again.

Your Private Protocol

The RS-232 protocol specifies many things, but the content of the message and the
formatting of that content are not dictated. Assuming you are sending more than one

byte of information, you will need a scheme for ordering your bytes. If one end of the
conversation is out of your hands (for instance, if you are talking to a motor control
board), you will have to study the documentation to learn and conform to their scheme for
formatting messages. If you control both sides of the conversation (for example, when your
microcontroller is talking to your software on a multimedia computer), you can invent any
scheme you like for formatting your messages, as long as you are consistent. We will talk
about two techniques, punctuation and call and response.

Punctuation

Imagine you're sending the values of three sensors from the microcontroller to the
multimedia computer; call them sensor A, B, and C. You're sending three bytes of data over
and over, like so:

Loop

Read sensor A

Read sensor B

Read sensor B

Send serial string of bytes: A, B, C
End Toop

The multimedia computer has a serial buffer, so it stores all the bytes there until it’s ready
to do something with them. To the multimedia computer, the incoming data looks like this:

ABCABCABCABCABCABCABCABCABC

However, if the microcontroller starts sending before the multimedia computer starts
listening, the string of data might look like this:

CABCABCABCABCABCABCABCAB
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The multimedia computer has no way of knowing which byte corresponds to which sensor.
It would be great if you could add a character to delimit the beginning of each new set of
readings, like this:

C.ABC.ABC.ABC.ABC.ABC.ABC.ABC.AB

Each time you get a period, you know the next three bytes make up a full set of values for
the switches in the right order.

In order for this method to work, you have to use an end-of-transmission character that will
never be found in the message itself. That is easy enough to do when you send your messages
as an ASCII text string, where only a small range of characters are commonly used (32 to
127), leaving lots of candidates for message delimiters. Carriage returns (ASCII 13), commas,
or just spaces are commonly used. For example, you could send the reading from each sensor
separated by a space, and every set of readings separated by a comma. It might come out
looking like 210 200 44, 200 20 44, 150 30 44. 44 is the ASCII value for a comma.

Finding a good delimiter when you send your readings as raw values is a little more
difficult. If the A, B, and C bytes can all range from 0 to 255, what can you use as a unique
delimiter? You can get around this by limiting the range of the other three bytes to a range
from 0 to 254, then using 255 as your punctuation.

Below are some code snippets for punctuating your transmissions. These assume that you
have put readings from either switches or analog sensors into three different variables.

( PBASIC ) send the numbers with a 255 character at the end
serout 6, 16468, [AVar, BVar, CVar, 255]
' OR

' send as a text strings separated by spaces with a comma at the end
serout 6, 16468, [DEC AVar,32,DEC BVar,32,DEC CVar, 44]

( MBasic ) 'send the raw values with a 255 character at the end
serout 6, N9600, [AVar, BVar, CVar, 255]
OR

send as ASCII text strings separated by spaces with a comma at the end
serout 6, N9600, [DEC Avar,32,DEC BVar,32,DEC CVar, 44]

PicBasic 'send the raw values with a 255 character at the end
Pro Serout2 portc.6, 16468, [AVar, BVar, CVar, 255]
" OR
' send as ASCII text strings separated by spaces with a comma at the end
Serout2 portc.6, 16468, [DEC Avar,32,DEC BVar,32,DEC CVar, 44]

U

BX-Basic ' send the numbers with a 255 character at the end
punctuationVar = 255

d
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Call putQueue(outputVar, Avar, 1)

Call putQueue(outputvar, BvVar, 1)

Call putQueue(outputvar, CVar, 1)

Call putQueue(outputVar, punctuationVar, 1)

' OR

' send as a text strings separated by spaces with a comma at the end
' make a message to send

OutputString =cstr(AVar)&chr(32)&cstr(BVar)&chr(32)&cstr(CVar)&chr(44)
Call putQueueStr(outputVar, outputString)

Call and Response

It is usually better to take a more controlled approach in which the microcontroller sends
only one set of data at a time at the multimedia computer’s request. Because there is only
one set of readings at a time in the buffer, you can easily identify which sensor is which
without the use of a delimiter simply by the order in which they arrived. The first one sent
will be the first one received. The sequence would work something like this:

1. The microcontroller waits (usually with a blocking function) for bytes.

2. The multimedia computer sends bytes (sometimes an arbitrary byte just to
prompt a reply).

3. The microcontroller sends bytes.

The multimedia computer receives bytes in order.

The whole process loops infinitely, as long as the two computers need to communicate.
This method is termed call-and-response. The multimedia computer calls, and the
microcontroller responds. This is where the blocking function of the microcontroller
(discussed earlier in this chapter) really comes in handy. Sometimes you’ll also hear it
referred to as handshaking. This type of synchronization also ensures that the data is
fresh. If your microcontroller is spewing readings faster than the multimedia computer can
react to them, you may get a backlog of old readings in the buffer, or the old readings will
get overwritten by new readings when the buffer gets full. It’s an effective way of managing
long strings of data moving from one device to another.

Sometimes this technique gets hung up when both sides are frozen, expecting the other to
begin. If you have problems with this, it is a good idea to send a request at the start of your
multimedia software and perhaps periodically thereafter, or possibly to have a timeout for the
blocking function on your microcontroller’s serial input function, as shown above. Here’s an
example in microcontroller code (the multimedia computer code will follow later):

( PBASIC ) ' TX is connected to pin 6. RX is connected to pin 7

' switches are on pins 0, 1, and 2.
SwitchAvar var byte
SwitchBvar var byte
SwitchCvar var byte
' declare a byte for incoming data:
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RXData var byte

input
input
input

main:

goto

NS i )

' wait for serial input from the multimedia computer;
' if you get nothing in 10 ms, go to main:
serin 7, 16468, 10, main, [RXDatal

' read the switches:
SwitchAvar = in0
SwitchBvar = inl
SwitchCvar = in2

' send the values out:
serout 6, 16468, [SwitchAvar, SwitchBvar, SwitchCvar]
main

( MBasic )

"TX

is connected to pin 6. RX is connected to pin 7

switches are on pins 0, 1, and 2.

SwitchAvar var byte

SwitchBvar var byte

SwitchCvar var byte

' declare a byte for incoming data:
RXData var byte

input
input
input

main

goto

N = O

' wait for serial input from the multimedia computer;
' if you get nothing in 10 ms, go to main:
serin 7, N9600, 10, main, [RXData]

' read the switches:

SwitchAvar = in0
SwitchBvar = inl
SwitchCvar = in2

' send the values out:
serout 6, N9600, [SwitchAvar, SwitchBvar, SwitchCvar]
main
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PicBasic
Pro

' TX is connected to pin C6. RX is connected to pin C7

switches are on pins B0, Bl, and B2.

SwitchAvar var byte

SwitchBvar var byte

SwitchCvar var byte

' declare a byte for incoming data:
RXData var byte

input portb.0
input portb.l
input portb.2

main:

wait for serial input from the multimedia computer;
if you get nothing in 10 ms, go to main:
serin2 portc.7, 16468, 10, main, [RXDatal

read the switches:
SwitchAvar = portb.0
SwitchBvar = portb.1
SwitchCvar = portb.2

send the values out:
serout2 portc.6, 16468, [SwitchAvar, SwitchBvar, SwitchCvar]

goto main

( BX-Basic )

' TX is connected to pin 11. RX is connected to pin 12

dim
dim
dim
dim
dim
dim
dim

sub

switches are on pins 5, 6, and 7

SwitchAvar as byte

SwitchBvar as byte

SwitchCvar as byte

inByte as byte

gotaByte as boolean
inputBuffer(l To 10) As Byte
outputBuffer(l To 40) As Byte

main ()

' set up serial port:

call defineCom3(12, 11,bx1000_1000)

call openQueue(inputBuffer, 10)

call openQueue(outputBuffer, 40)

call openCom(3,9600,inputBuffer, outputBuffer)

do
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read switches:

SwitchAvar = getPin(5)
SwitchBvar = getPin(6)
SwitchCvar = getPin(7)

read serial data in:
If statusQueue(inputBuffer) = true then
call getQueue(inputBuffer, inByte, 1)

call putQueue(OutputBuffer, SwitchAvar, 1)
call putQueue(OutputBuffer, SwitchBvar, 1)
call putQueue(OutputBuffer, SwitchCvar, 1)

end if
Toop
end sub

Sending Bigger Numbers

The standard-sized package that you send is a byte. A byte can hold a range of values from
0 to 255. The problem we often encounter is that the range of our analog input doesn’t fall
perfectly within that range. You can send the number as text, which uses as many bytes
as there are digits. You can scale your number down to fit into one byte. Or you can break
the number down into multiple bytes, send them separately, and recombine them on the
receiving end.

Send Your Numbers as Text

As we have discussed in the sections “Numbers or Letters: Using ASCII” and
“Punctuation,” sometimes it is useful to turn your numbers into a text string temporarily,
for the purposes of transmission. This is less efficient because you have to use a byte

for every digit and conversion functions on both ends of the transmission. However, it
offers an advantage in that your numbers can be as big as you like. Check the code in the
“Punctuation” section above.

Scaling Your Numbers

In Chapter 6 we discussed scaling functions to convert one range of numbers to another
range of numbers. Serial communication gives you an opportunity to apply that idea in

a simple way. If, for example, you're dealing with an analog sensor connected to your
microprocessor’s analog-to-digital converter, and you're getting the full range of the ADC,
you know the number is 10 bits, or 0 to 1024. This can be scaled down to a byte-sized
range simply by dividing by 4. In other cases, though, the answer is not as simple as that.
For more complex cases, where your range is perhaps 30 to 600, use the ranging methods
outlined in Chapter 6.
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Whenever you scale down a number greater than 255 to fit in a byte-sized message, you're
losing resolution. Sometimes this is desirable because it filters out irregularities, but at
other times it makes your sensor response feel chunky.

Sending Big Numbers in Many Bytes

It is possible to send numbers greater than than 255 by sending two bytes. On the
microcontroller end, this is simple. For example, to send out a word- or integer-sized
variable, you have to break the variable into two bytes, then place them in the serout,
serout2, or putQueue() functions. PBASIC, MBasic, and PicBasic Pro allow you to do this by
using dot notation to refer to part of a variable, as shown below. In BX-Basic, you can send
the integer as two bytes.

PBASIC WordVar var word

MBasic

PicBasic
Pro

gl

Then send out as follows:

PBASIC Serout 6, 16468, [wordVar.lowbyte, wordVar.highbyte]

MBasic Serout 6, N9600, [wordVar.lowbyte, wordVar.highbyte]

PicBasic | Serout portc.6, 16468, [wordVar.lowbyte, wordVar.highbytel

i e

BX-Basic Dim integerVar as integer

Then send out as follows:

call putQueue(outputVar, integerVar, 2)

However, on the multimedia computer side, you will need to write code to recombine the
two separate bytes into one variable, using this formula:

BigVar = firstbyte + (secondByte * 256)
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Serial Communication on a Multimedia Computer

Many people reading this book already have some experience authoring on multimedia
computers and are now champing at the bit to link them with the physical world. In

this section, we will show you how to use serial communication to make a connection
between a multimedia computer’s authoring environment and a microcontroller. If you
already know how to use one of the environments that we cover (or a similar one), you're
in good shape. If you're new to programming on a multimedia computer, you should pick a
language and then find other resources for programming beyond this book. It’s not possible
for us to recommend the single best multimedia authoring language because this is a
personal choice. We use several for different purposes. Every programmer has a set of tools
that they know best, and each tool has different strengths and weaknesses. We’ll cover a
couple of different languages here.

We find Macromedia’s Director MX to be the best mix of power and ease of use, but a little
pricey. Microsoft’s Visual Basic is also very powerful and has a big following, but it’s more
typically used in business-oriented applications than in multimedia applications. Cycling
'74’s Max/MSP is the easiest to use, and it’s great for MIDI, sound, and video control, but
it’s not as useful for developing onscreen human interfaces as the others. Java is free and
widely used, but a bit too low-level for doing interesting things very quickly. Processing

is a new environment that we like; it provides a simple environment for making graphic
applications, and it can be extended by incorporating Java once you know what you're
doing. It is also free (http://www.processing.org). Macromedia’s Flash MX is limited mostly
to Web graphics and not extensible for serial communication, but it is easy to use and very
popular. We built a tool in Java so it can communicate with a microcontroller serially.
Future versions of Flash MX may have extensions for serial communication. You can also
communicate with Flash MX using a serial-to-Ethernet converter like the Cobox Micro
mentioned in Chapter 12 and Flash’s XMLSocket command.

Most programming environments cannot control the serial port out without being
extended. The operating system procedures to drive the serial port are different on each
hardware platform, and the tools for manipulating it are specific to the operating system.
Cross-platform authoring environments like Flash and Director MX usually leave out
these platform-specific details and rely on third-party developers to add extensions to
the environment. Often the biggest obstacle to serial communication is tracking down the
extensions that you need to access the serial port and placing them in the right folders.

After you have added any extensions to your programming environment, you’ll need to
learn the commands for using those extensions. The basic steps are as follows:

1. Access the commands in the extension file (referred to as creating a
serial object).

Pick which serial port you want to use.

Set the serial configuration and the baud rate.

Send bytes.

Receive bytes.

ok w b
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A few general principles for all serial programming follow. We’ll go over the details for
each of our examples as we cover the code for each environment.

Setting the port to be used (for example, COM1, COM2) is sometimes done when creating
the serial object and sometimes done afterwards with a separate command. Port names
can sometimes be a little different from the usual COM1 or COM2, particularly if you are
using a USB adapter or serial expansion card. In those cases, the port names might be more
proprietary, like USA19HS1.1. Your serial library will hopefully have a means for querying
the machine for the names of all the ports available.

Commands for setting the configuration are usually straightforward, and some serial
interfaces just default to the standard 9600-N-8-1.

Sending bytes is easy, usually a single command. Receiving bytes requires that you deal
with the fact that this is asynchronous communication; in other words, you don’t know
exactly when bytes are arriving. Receiving bytes on the multimedia computer is easier than
receiving on the microcontroller because multimedia computers have serial buffers. The
operating system automatically stores incoming bytes into this serial buffer until your code
has a chance to deal with them. There are two main techniques for finding out about bytes
waiting in the serial buffer. The first technique is to continually poll the serial buffer using
a command that tells you how many bytes are waiting there. The second way is to specify a
function to be called when something arrives in the serial buffer. This is known as creating
a callback or a listener.

Serial in Lingo
This section assumes you are familiar with Macromedia Director MX and its scripting
language, Lingo.

Although there is no serial programming interface built into Director MX, the environment
is easily extensible using an architecture called Xtras. The first step in adding an Xtra

to Director MX is finding and buying it. We recommend the SerialXtra from http://
www.physicalbits.com, which is far and away the best one. Much of what follows applies to
any Lingo Xtra, so if you have used Xtras before it should be a snap.

The Xtra is a file that we recommend you place in the same folder as your Director MX
movie (Macromedia recommends you place it in the Xtras folder of the application folder;
we find it simpler to do it our way. If you ever have problems with an Xtra, try their way
too). Xtras are platform-specific, so there will be one file for the Macintosh and a different
file for Windows. To use this with Shockwave in a browser you currently have to manually
copy the Xtra file into the shockwave/xtras folder.

The next step is to open the Xtra from within your movie file using the command

openxlib "serialXtra.osx"

You'll need to match the extension to your platform. On the Macintosh (OS X), the
extension is .0sx. In Windows, it’s .x32.
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This is usually done in your startMovie or prepareMovie handler. You can confirm that the
movie has recognized the Xtra if you type showxlib in the message box, SerialXtra should
now appear in the list of Xtras.

The next step is to make an object, as follows:

SerialObj = new( xtra "serialXtra" , programmerName, serialnumber, Ticenselength)

The new command creates an object using the SerialXtra as the blueprint. The other
parameters are your name (the e-mail address you gave when downloading the Xtra), the
serial number that PhysicalBits mailed you when you downloaded the Xtra (this is specific to
the operating system you’re working on), and the length of the license that you were given.

The command above creates a reference to the serial object and stores that reference in the
variable Serial0Obj. For those of you not familiar with object-oriented programming, this
might be the first time you ever put anything other than text or numbers into variables.
You should make this variable global because you will use it anywhere in your program
you need to use any of the serial commands.

Once you've created the serial object, you need to open a serial port. To find the names of
all serial ports available, you can use the put findports() command in the message window
once you've created the object (make sure the movie is running when you do it). You’ll get a
list like this (this list is from a Macintosh running OSX):

[[#portName: "/dev/cu.IrDA-IrCOMMch-b", #fMaxBaudRate: "N/A", #FullName:
"/dev/cu.IrDA-IrCOMMch-b", #InUse: "No"1, [#portName: "/dev/cu.modem",
#MaxBaudRate: "N/A", #FullName: "/dev/cu.modem", #InUse: "No"1, [#fportName:
"/dev/cu.USAI9HS191P1.1", #MaxBaudRate: "N/A", #FullName:
"/dev/cu.USA19HS191P1.1", #InUse: "No"]]

Copy the port name of the serial port you want to use, and add the following line to your
startMovie or prepareMovie handler:

serialObj.openPort (portName)

For example, from the list above, the port for the Keyspan USA19HS USB-to-serial adaptor
is /dev/cu.USA19HS191P1.1

serialObj.openPort("/dev/cu.USA19HSI91P1.1")

NOTE

Don’t be confused by the dot notation. What this command says is that you want
to use the openPort() command, which can be found in the serial object that’s
contained in the variable SerialObj.
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Next you set the serial protocol, using the setProtocol() command:

SerialObj.setProtocol (9600, "n", 8, 1)

The default is 9600, N-8-1, so you can skip this command if those are the settings you want.

That’s everything that you need at the start of your program to use the serial port. All of it
should go in the startMovie or prepareMovie handler. The only other housekeeping detail you
need to know is that you should dispose of the serial object when your program ends. To
do this, put the following code in your stopMovie handler:

SerialObj = 0
closeX1ib

If you don’t dispose of the serial object, Director MX won't be able to access the serial port the
next time you run your movie. If your program halts due to an error, you may have to manually
call stopmovie using the message box in order to kill the serial object releasing the port and the
memory. If that doesn’t work, you’ll need to restart Director MX to fix this problem.

Sending data is easy. You just say

SerialObject.writeChar("A")

or

SerialObject.sendNumber(65)

and a byte gets sent out.

Receiving data is a little more complicated. The Xtra is always listening to the serial port
and placing bytes into a serial buffer as they come in. The serial buffer gives you some
breathing room so that you don’t have to stop everything in order to catch the incoming
information (as you do on a microcontroller), but you still have to check it frequently

if you want your program to respond in a timely fashion to what the microcontroller’s
sending out. The main command for reading the serial buffer is the readNumber() command,
which takes the first byte off the buffer and reads its value as a number from 0 to 255.

You can also interpret the byte as an ASCII character by using readChar(). For example, if
the microcontroller sent the value 65, readNumber() would return 65, and readChar() would
return A. If you want the entire buffer as a string of characters, you can use readString().

Commands that you want to repeatedly happen in Director MX should be placed in an on
ExitFrame handler. For example:

On ExitFrame
MyVar = SerialObject.readNumber()
End

This handler would read bytes out of the serial buffer once each frame. If your
microcontroller is continually sending one byte over and over (for example, sending the
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value of a switch), you’ll notice a definite time lag between the time the switch changes
and the time Director MX responds. This is because the microcontroller can fill the serial
buffer faster than Director MX can read it. For this reason, it’s usually better to use a call-
and-response approach.

If you are expecting a number of bytes, you can use the charsAvailable() function to check
that the number of bytes you expect has arrived. Don’t use readNumber() or readChar() until
you have the number of bytes that you expect in the serial buffer. Every time you use either
of those commands, a byte is removed from the buffer, making the byte that arrived next
first on the queue. By waiting until charsAvailable() returns the right number of bytes, you
ensure that you get the entire string. The bytes are kept in order as they arrive in the serial
buffer so that the first one you sent from the microcontroller will be the first one you get
when you call readChar() or readNumber().

The code below will wait for three or more bytes in the serial buffer, then read them and place
them in variables. If there’s nothing in the buffer, it will send out a byte to ask for data. This code
assumes you've set up the ports correctly and have opened the one you want, as described above.

global serialObject
On ExitFrame
-- see if the port's been opened:
If serialObject.isPortOpen() then
If serialObject.charsavailable() = 0 then
--send a byte to ask for data
SerialObject.writeChar("A")
End if

If SerialObject.charsAvailable() >=3 then
--first byte sent by microcontroller:
MyVar = SerialObject.readNumber()
--next byte sent by microcontroller:
MyVar2 = SerialObject.readNumber()
--third one sent by microcontroller:
MyVar3 = SerialObject.readNumber()

End if

End

In an entirely different approach, you can use readString() to read everything out of the serial
buffer in one fell swoop and then parse through the string. We don’t usually recommend

this approach. It’s messy. This would work well if you were sending readings from the
microcontroller as ASCII text strings with punctuation. Here’s how you would do this:

global serialObject, textSofFar
On ExitFrame
TextSoFar = textSoFar & SerialObject.readString()
--if you sent your readings separated by spaces with a comma at the end
If textSoFar.word.count >= 3 then
--the integer function converts from the ASCII string back into a number
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MyVar = integer(textSoFar.word[1])
MyVar2 = integer(textSoFar.word[2])
MyVar3 = integer(textSoFar.word[3])
Delete textSoFar.item[1] --items are things separated by commas
End if
End

Putting all together:

global serialObject, serialObjectName, serialObjectFilename
global myVarl, myVar2, myVar3
on startMovie

clearglobals

-- variables for setting up the xtra.

-- Fi11 in your own values from the email

-- that you get from the Ticense registrar:

serialObjectFilename = "SerialXtra"
serialObjectName = "SerialXtra"
programmerName = "your.email@someisp.com"
serialnum = "XXX-XXXX-XXXX-XXXX "
licenselLength = 90

-- make a new instance of the xtra
openxlib the pathname & "serialXtra.osx"

serialObject = new (xtra serialObjectName, programmerName, serialnum,
licenselLength )

-- check that it has been created correctly
if objectP( serialObject ) then
put serialObject
else
alert("Instance not valid")
end if

-- fill in the name of your serial port below:
serialObject.openPort("/dev/cu.USA19HS191P1.1")

-- set the data rate, start bits, etc:
serialObject.setProtocol(9600, "n", 8, 1)
end

on stopMovie
-- dispose of the xtra and close the xtra file
serialObject.closePort()
set serialObject to 0
--closeX1ib
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end

on exitFrame
doSerial
go the frame
end

on doSerial
-- see if the port's been opened:
If serialObject.isPortOpen() then
If serialObject.charsavailable() = 0 then
--send a byte to ask for data
SerialObject.writeChar("A")
End if

If SerialObject.charsAvailable() >=3 then
--first byte sent by microcontroller:
MyVar = SerialObject.readNumber()
--next byte sent by microcontroller:
MyVar2 = SerialObject.readChar()
--third one sent by microcontroller:
MyVar3 = SerialObject.readChar()

End if

End if
end

If you put all of this text in your main movie script, and make sure the Xtra file is in the
same directory as your movie, this will work with the call-and-response microcontroller
examples above. You'll see the variables myVar, myvar2, and myVar3 change with your switches.

Finally, you can use a callback with the SerialXtra. A callback basically takes all the work
you were doing in the exit frame and offloads it to the Xtra. This is particularly nice when
it saves you from parsing through text to find a punctuation character that you may have
used to signify the end of a transmission.

You should supply the name of the handler you want the Xtra to call in startMovie. This line
would cause the Xtra to call your function RecievedChars after 10 characters have arrived.

SerialObject.ReadUsingCallback("ReceivedChars", 10)

Of course, you are then obliged to have such a handler:

On RecievedChars data
Put theData.Buffer
Put theData.String
--send a byte to ask for data
SerialObject.writeChar("A")
End
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The buffer is then delivered to you as a parameter variable in the form of a property list.
TheData.Buffer will contain all serial data in the input buffer as raw values and theData.String will
contain everything as a string. Note that the characters in the string will be the ASCII characters
for the raw values, not ASCII-encoded values. In other words, if the microcontroller sends three
bytes with raw values of 65, 66, and 67, theData.String will contain the string ABC, not 656667.

You can also supply the name of the handler you want the Xtra to call in startMovie after
a specific character has arrived. This line would have the Xtra calling your function
RecievedChars after a comma has arrived.

SerialObject.ReadUsingCallbackOnToken( " RecievedChars ", chartoNum(","))

You are again obliged to have such a handler:

on RecievedChars thedata
put theData
--send a byte to ask for data

SerialObject.writeChar("A")
end

Serial in Processing

Serial communication in Processing is simple. Before you can do it, however, you’ll need to
make sure to follow the installation instructions carefully before you start coding, as part
of the installation (as of version 0068) installs serial port extensions for Java (remember,
Processing is built on Java). We’ll assume you were able to get Processing installed and able
to recognize your serial ports for the purposes of this explanation.

To initialize the serial port in Processing, choose the appropriate port from the
sketch,serial port menu. Then call the beginSerial() command. If you enter no parameters
in parentheses, beginSerial() defaults to 9600 baud. To change the baud rate, put your
preferred baud rate in the parentheses. The beginSerial() command is usually called in
the setup() handler. In future versions, due to be released shortly after this printing,
Processing will use separate libraries for serial, similar to Xtras in Director MX. Check
their documentation for the latest details on initializing a serial connection.

To close the serial port, call the endSerial() handler. This happens automatically when your
program stops as well.

Processing uses a callback handler to handle serial data. A callback handler is a handler
that runs in the background and sends a message to your program whenever something
that it’s watching changes, as described above in the Director MX example. In this case,
each time a new byte comes into the serial buffer, the serialtvent() handler is called. You
have to write this handler to decide what should happen. The byte that came in is put in a
special variable of type int called serial. To get the byte, just set a variable equal to serial:

void serialkvent() {
myInt = serial;
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To send serial out, use the serialirite() command. Seriallirite() can take a single int or a an
array of bytes as its parameter.

It’s that simple.

Okay, we lied. Handling multiple bytes through call and response is a little more complicated
in Processing. There are many methods you could use, but the underlying idea is that you
need to collect the bytes as they come in and put them in a variable that can handle multiple
bytes. For this example, you convert the serial bytes into the char data type (remember, serial
returns an int), and add them to a String. When the String gets long enough, you parse each
char and convert it to whatever data type you need in order to use it:

void serialEvent() {
processString((char)serial);

void processString(char inByte) {
// add the latest byte from the serial port to the string to be parsed:
serialString += inByte;
// update the string length:
serialCount = serialString.length();

// if we have 3 bytes, parse the string:
if (serialCount > 2 ) {
fgcolor = (int)serialString.charAt(0);
xpos = (float)serialString.charAt(l);
ypos = (float)serialString.charAt(2);
// clear the string when we're done, and ask for more:
serialString = "";
serialWrite(65); // send a capital A to request new sensor readings

This example expects 3 bytes from the microcontroller, all of which range from 0 to 255,
coming from analog sensors and putting it all together to move a ball on the screen:

int bgcolor; // background color

int fgcolor; // i1l color

String serialString = ""; // where we'll put what we receive serially
int serialCount = 0; // a count of how many bytes we've received
float xpos, ypos; // Starting position of the ball

void setup() {
beginSerial(); // Default start serial at 9600 baud
size(200, 200); // stage size
noStroke(); // no border on the next thing drawn

// Set the starting position of the ball (middle of the stage)
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xpos = width/2;
ypos = height/2;
serialirite(65); // send a capital A to start the MC sending

void Toop() {
background(bgcolor);
fill(fgcolor);
// Draw the shape
ellipse(xpos, ypos, 20, 20);

void serialEvent() {
processString((char)serial);

void processString(char inByte) {
// add the latest byte from the serial port to the string to be parsed:
serialString += inByte;

// update the string length:
serialCount = serialString.length();

// if we have 4 bytes, parse the string:
if (serialCount > 2 ) {
fgcolor = (int)serialString.charAt(0);
xpos = (float)serialString.charAt(1);
ypos = (float)serialString.charAt(2);

// clear the string when we're done, and ask for more:
serialString = "";

// send a capital A to request new sensor readings:
seriallirite(65);

Serial in Java
The classes that you will need to perform serial communication are not included with
your standard installation of Java. Your first step is to find the classes that will work with
your hardware platform. For Windows, this is easily done by visiting the Sun Java site:
http://java.sun.com/products/javacomm/index.html. For the Mac and other platforms, you
can buy classes from http://www.serialio.com/. For free versions for the Mac OS 9, try
http://homepage.mac.com/pcbeard/javax.comm.MR]J/. For Mac OS X or Linux, try http:
/Iwww.rxtx.com; this still requires part of the download from Sun. For other platforms,
try http://republika.pl/mho/java.comm/. Theoretically, all of these will conform to Sun’s
communications API, so your code can be pretty close to the same.
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The installation is the hardest part, so you should actually read the readme file that comes
with whatever package you use. On a PC you need to copy three files: “comm.jar” in

your <JDK>/jre/lib/ext/, “javax.comm.properties” in <JDK>/jre/lib/, and “win32com.dl1l”

in <JDK>/jre/bin/. Using RXTX on OSX, you need to put “libSerial.jnilib” and
“RXTXcomm.jar” into /Library/Java/Extensions/. If you have ever used external classes
with Java before, you know that getting all the files in the right directories is at least half
the battle, particularly if you have more than one version of Java on your machine. If you
don’t like to dwell on this stuff too much, just put the necessary files in the folders of every
installation of Java.

To query the machine for available ports, the code looks like this:

Enumeration portlist = CommPortIdentifier.getPortldentifiers();
while (portList.hasMoreElements()) {
CommPortIdentifier portld = (CommPortIdentifier) portList.nextElement();
if (portld.getPortType() == CommPortldentifier.PORT_SERIAL){
System.out.printin(portId.getName() + " " +portld.getCurrentOwner());

The code for finding the correct port and creating a serial object looks like this:

CommPortIdentifier portId=CommPortldentifier.getPortldentifier("COM1");
SerialPort mySerialPort = (SerialPort) portld.open("myApplicationName",2000);

The line for setting the configuration looks like this:

mySerialPort.setSerialPortParams (9600,
SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

Reading and writing with the serial port is done with InputStreams and OutputStreams, just
like any other I/O operation in Java. Using these streams will seem familiar to anyone who
has used Java for Internet programming. The code for getting these streams looks like this:

InputStream in = mySerialPort.getInputStream();
QutputStream out = mySerialPort.getOutputStream();

Once again, sending is easy.

out.write(x); //x is a byte sized variable
out.write("Hello".getBytes()); //covert "Hello" to bytes and send

When it comes to receiving bytes in Java, there are a couple of ways to do it. The first way
is to just say

int input = in.read();
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You can wrap your InputStream in other types of streams like the BufferedReader, which
would be very useful for sending text strings punctuated with an end of line character. You
turn the strings back into integers with the parseInt method.

BufferedReader lineln = new BufferedReader(new InputStreamReader(in));

String newline = Tlineln.readline(); //wait for charl3, charl0 or charl3 and 10;
StringTokenizer st = new StringTokenizer(newLine," ");

// or you can use String.split instead of StringTokenizer in Java 1.4

if (st.hasMoreTokens()) int light = Integer.parselnt(st.nextToken());

if (st.hasMoreTokens()) int head = Integer.parselnt(st.nextToken());

if (st.hasMoreTokens()) int pressure = Integer.parselnt(st.nextToken());

The problem with these read functions are that they are blocking functions. In other
words, they wait at the read() or readLine() function, halting further execution of your Java
code until something comes in the serial port. You have already seen this freezing with the
microcontroller, and even used it to your advantage in synchronizing call-and-response
operations. You can avoid this by putting the read() command into a separate thread. A
simpler solution is to first check if there are any bytes available in the serial buffer.

if (inputStream.available() > 0) {
int input = in.read();

The above methods require that you are in a repeat loop or thread that is continually
polling the serial object to see if there is anything available. Alternatively, you can set up a
callback and have the SerialPort object do this continual checking. You do this by adding
an event listener:

mySerialPort.addEventlistener(this);

You have to do two other things to get this to work. First, your class must implement the
SerialPortEventLlistener class. To do this, add these two words to the end of your class
declaration:

public class YourClass implements SerialPortEventlistener {

Second, you have to include a SerialEvent() method in your class. This is the method that
will be called anytime there is new stuff coming in the serial port.

public void serialEvent(SerialPortEvent event) {
if (event.getEventType()== SerialPortEvent.DATA_AVAILABLE) {
if (inputStream.available() > 3) {
int input = in.read();
}
System.out.printin ("stuff came in" );
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Putting it all together, you get a class to read in three bytes and send one back with the
horizontal mouse position.

import javax.comm.*;

//import gnu.io.*; //use this instead of javax.com if you are using RXTX
import java.io.*;

import java.awt.*;

import java.util.*;

public class SerialExample extends Frame implements SerialPortEventListener {
static SerialExample myFrame;
//we are making this into a frame so we can track the mouse
SerialPort mySerialPort =null;
InputStream in;
QutputStream out;
byte x = 50;

static public void main(String[] args) {

// Print out the list of serial ports,

//in case you don't know the name"

Enumeration portlist = CommPortIdentifier.getPortldentifiers();

while (portList.hasMoreElements()) {
CommPortIdentifier portld = (CommPortldentifier)portList.nextElement();
if (portld.getPortType() == CommPortldentifier.PORT_SERIAL){

System.out.printin(portld.getName() + " " +portld.getCurrentOwner());

// Change the port name below as needed on the Mac:
myFrame= new SerialExample("COM1",9600);

//the following is all just window management
myFrame.setVisible(true);

myFrame.setlLocation(new java.awt.Point(0, 0));
myFrame.setSize(new java.awt.Dimension(255, 450));
myFrame.setLayout(null);
myFrame.setTitle("Serial");

//add a Tistener for closing the window, in that event call the
windowClosing method

myFrame.addWindowListener(new java.awt.event.WindowAdapter() {public void
windowClosing(java.awt.event.WindowEvent e) {myFrame.thisWindowClosing(e);}});

//add a listener for moving the mouse in the window, in that event call the
mouseMoved method

myFrame.addMouseMotionListener(new java.awt.event.MouseMotionAdapter()
{public void mouseMoved(java.awt.event.MouseEvent e) {myFrame.mouseMoved(e);}});

TEAM LING - LIve, Informative, Non-cost and cenuine !



Communicating between Computers - Chapter 7 175

public SerialExample (String whichPort, int whichSpeed) {
//which port you want to use and the baud come in as parameters

try {
//find the port
CommPortIdentifier portld = CommPortIdentifier.getPortldentifier
(whichPort);
//open the port
mySerialPort = (SerialPort)portld.open("SerialExample" + whichPort, 2000);
//configure the port
try {
mySerialPort.setSerialPortParams(whichSpeed,
mySerialPort.DATABITS_8,
mySerialPort.STOPBITS_1,
mySerialPort.PARITY_NONE);
} catch (UnsupportedCommOperationException e){System.out.printin
("Probably an unsupported Speed");}
//establish streams for reading and writing to the port
try {
in = mySerialPort.getInputStream();
out = mySerialPort.getOutputStream();
} catch (IOException e) { System.out.printin("couldn't get streams");}
try {
mySerialPort.addEventListener(this);
mySerialPort.notifyOnDataAvailable(true);
} catch (TooManyListenerskException e) {System.out.println
("couldn't add Tlistener");}
try {
//send an initial character in case your microcontroller is waiting:
out.write("A".getBytes());
} catch (IOException e) {System.out.printin("couldn't send byte");}
}
catch (Exception e) { System.out.printin("Port in Use");}

public void serialEvent(SerialPortEvent event) {
if (event.getEventType()== SerialPortEvent.DATA_AVAILABLE) {
try {

if (in.available() >= 3) {

// we will wait for three sensor readings
int heat = in.read();
int light = in.read();
int pressure = in.read();
//do something with these numbers
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System.out.printin(heat + " " + Tlight + " " + pressure);
out.write(x); //send the mouse position back
} //end if for data available
} catch (IOException e) {}
} //it's a serial port event

void thisWindowClosing(java.awt.event.WindowEvent e) {
myFrame.setVisible(false); // Close the window when the close box is clicked
myFrame.dispose();
System.exit(0);
}
public boolean mouseMoved(java.awt.event.MouseEvent evt){
x = (byte) evt.getX();
// Put the mouse coord into a variable called x
return(true);

Theoretically, these classes can work within the security sandbox of an applet, but it would
have to be signed for other people to use it. Due to a bug in Sun’s code, you need to add
these lines when using a signed applet:

String drivername = "com.sun.comm.Win32Driver";

try {
CommDriver driver = (CommDriver)Class.forName(drivername).newInstance();
driver.initialize();

} catch (Exception e) {System.out.printin (e.getMessage ()); }

You can test an applet on your own machine without signing it by editing your java.policy
file. On a PC you may find multiple versions of this file for each installation of Java. In
OSX you can find this in /Library/Java/Home/lib/security/. You might have to unlock the
file before you are able to change it.

grant codeBase "http://localhost/*" { permission java.security.AllPermission;
1N

grant codeBase "file:///C:/YOURFOLDERS../-" {

permission java.security.AllPermission;

1N

An applet adds many places to go wrong, so we recommend getting things working first in
a Java application.

Serial in Max/MSP

Max/MSP is a visual programming language from Cycling '74. Until recently, it was
available only on the Macintosh. As of version 4.3, it’s available for Windows XP, too. It was
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originally designed as a tool for creating elaborate MIDI-based control systems. Recently,
with the addition of MSP, it’s become an excellent tool for real-time sound synthesis and
processing as well. While it’s a good control interface for sound and MIDI applications, its
graphics tools are not as simple to use as those in Director MX, Processing, or Flash, so

it tends to be a tool for performer/programmers rather than a tool for building standalone
applications to be given to an end user. Nevertheless, it’s an excellent tool for performance,
and with the recent addition of Jitter, a toolkit for real-time video processing, it’s an
excellent multimedia tool.

Programs, called patches in Max/MSP, are not written in text. They’re assembled onscreen
from a toolkit of functional objects. The outputs of one object are connected to the inputs of
another to create a sometimes elaborate collection of objects and connecting strings. It may
seem daunting at first, but for those who dislike coding in written form, it can be a real
treat. For more details, see http://www.cycling74.com.

Serial communication in Max/MSP is handled by using a serial object. There are five
possible arguments to be placed in the body of the object:

P Letter to represent the port. The two default ports (COM1 and COM2 on the
PC, modem and printer on the Mac) are a and b. Any additional ports are
ports ¢ through z, in the order they are installed. To find the name of your
ports, attach a message box containing the word print to the serial object’s
input, lock the patch, and click the message box. You should get a list of the
ports and the letters they’re assigned to in the Max window.

Baud rate (the default is 4800)
Data bits (the default is 8)
Stop bits (the default is 1)
Parity (the default is 0).

vvyy

The serial object has one input. The input is for sending data or asking for data. Any
number or character is automatically sent out as a byte or an array of bytes. A bang (Max/
MSP’s equivalent to “true”) causes the object to read in one byte of data from the port.

The serial object has two outputs. The left port outputs data bytes, and the right port
outputs status messages and error messages.

Figure 7.3 is a simple serial reader. The metro object, which is just a metronome, bangs on
the serial object every 5 milliseconds, looking for new data. Banging on the button above
the number object to the left of the serial object or scrolling that number object will send
the value of the number object out serially. The sprintf object and the print object beneath
the serial object take the incoming bytes, format them as ASCII, and print them to the Max
debug window. To get help on any object, select the object and choose “Help” from the Help
menu, and Max will show you a working example of how to use the object.

Figure 7.4 shows another example using the punctuation method described above. In this
case, Max/MSP reads in bytes until it gets a byte of value 255 (using the select object), then
reads the next three bytes. When it gets them (the z1 object makes a list of the bytes, reading
until it gets three bytes), it then parses the bytes, and puts each one into a separate number
box. The metro object at the top sends a message every 30 milliseconds to read again.
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Figure 7.3 ‘8886 seriallQ.max =1
A simple serial Max
patch.

to read data in
continually,

tosend a
nurnber out,

bang here bang here.
option-click the
serial object for the
help patch.
Figure 7.4 ®00 serial book o
A punctuation Max
patch.

. click to start reading continually every 20 milliseconds

click to see the list
of serial ports in the
Maz window

Click to read one
sentence

select on a header byte (2.9, 255) and flush the rest if you
get it. your first sentence might be too short,

group a three-byte sentence with the bytes after the
header

Conclusion

The principles in this chapter are widely applicable throughout computing. Creating a set
of agreements, a protocol, is a key skill for getting any two computers to talk to each other.
Being able to follow and build on a communication protocol is a core skill at every level of
our highly networked world. It may even help your love life.

Serial communication is the last core technical concept of this book. Everything in the
advanced section is a variation on one of the ideas in the preceding chapters: interaction
design, basic electronics, basic programming, digital input and output, analog input and
output, and serial input and output. In fact, every physical computing project we’'ve created
has used a combination of these same principles. By now, you’ve undoubtedly built a few
projects using the ideas we’ve covered, and you've got an understanding of how the ideas
work in practice. If you haven’t started building, what are you waiting for? Do it now. The
best way to learn this material is to use it.
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N PART | we covered the general things that you need to know for almost any
Iproject. In this second part of the book, we’ll introduce more advanced methods
for accomplishing a number of more specific tasks. Most of these methods in Part Il
are just special cases of the basic ideas in Part I. We won't repeat the circuits and code
from those chapters, but we will refer to them frequently. For example, we might talk
about a sensor and say that it fits into a normal digital input circuit and uses the usual
BASIC commands for digital input without supplying a schematic or sample code. If you
encounter something that you’re not comfortable with, go back to the earlier chapters
(usually Chapter 6) and try the examples there again. You can’t make an omelette until
you've learned to scramble an egg. In the preceding chapters, you scrambled a few eggs.
In the following chapters, you'll learn to make the physical computing equivalent of

omelettes, frittatas, huevos rancheros, and maybe even eggs Florentine.
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Physical Interaction Design,
or Techniques for Polite
Conversation

By now, you’ve got the basic electronic and programming techniques down and you are
starting to combine them to pull off your particular idea. This is a good time to step away
from the technology for a moment and consider how well your project works for your users.
For the first part of this chapter, we’ll discuss some ways to approach that problem and

lay out some basic interaction design guidelines. In the second part of the chapter, we’ll
provide some techniques for putting these approaches into action.

The Conversation: Listening, Speaking,
and Thinking'

In any well-designed physical computing application, the flow of activity between the
person and the computer should follow the same comfortable flow of a good conversation.
Designing the system so that this happens is what interaction design is all about. This
means balancing the timing of your listening, thinking, and speaking to coordinate with
the expectations and patterns of the user. When you do this work well, the interaction
between the person and the computer flows naturally enough that the person doesn’t have
to think consciously about their performance, but only about the overall result.

Listening

In actual conversation, we don’t often plan the taking of turns. Human beings are capable
(to a limited degree) of talking and listening at the same time. When a listener wants

to interrupt a speaker, she gives subtle physical cues, and the speaker knows to stop
talking and listen. There are also natural pauses in a conversation for the listener to

1 The ideas in this chapter rely heavily on Chris Crawford’s explanation of computer interactivity in The Art of Interactive
Design: A Euphonious and Illuminating Guide to Building Successful Software (No Starch Press, 2002).
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digest information and prepare a response. We know intuitively that when we present
information in conversation, we have to give our listeners time to digest the information.
We know how long it takes to perceive a change or digest an idea consciously, and we
factor that knowledge into our conversation. We give each other that time, and if we feel
that the person we’re speaking to should have responded, we prompt them to see if they're
still understanding us: “Do you get it?” Listening for cues while speaking takes a level of
sophistication that we seldom give ourselves credit for, because we’re so well trained in
doing it that we don’t give it a second thought.

When you program a computer to interact with the world, however, you realize how

much we take for granted in the course of everyday human interaction. A computer can’t
spontaneously react to a shout or a movement. If it’s not listening when the event happens,
it misses it. In fact, the very idea that a shout or a movement is an event that requires
response is something that’s got to be programmed in advance. It’s an important notion
because all interaction is made up of events or physical phenomena that must be sensed,
interpreted, and responded to. In order to plan interaction between computers and humans
(or anything else in the world) at a physical level, the first step is to teach it to listen. You
have to articulate the possible events that the computer will respond to, define those events
in terms the computer can sense, assign meanings to the events you've defined, and choose
an appropriate response to each event. If an event’s meaning changes based on the events
that precede it, you've got to give the computer instructions about that, too.

There are two main quantities you need to consider when you detect actions with sensors:
how intense the sensation was, and how long it took. When you’re dealing with digital
input sensors, you’ll only have two possible values for how intense the sensation was:
either you sensed something or you didn’t. With analog sensors, you’ll have a range

from the most intense to the least. Since your sensors convert other forms of energy into
electrical signals, you measure the intensity of the signal in volts. To measure how long the
event took, you use seconds, microseconds, or milliseconds, depending on the event. To
describe the event, then, you can use a graph of voltage and time. For example, an analog
sensor might produce a graph like the one in Figure 8.1.

And a digital sensor might produce a graph like the one in Figure 8.2.
Figure 8.1

Analog sensor readings
over time.

Voltage

Time
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Figure 8.2
Digital sensor readings
over time.

Voltage

Time

Keep these images in your head, as they’ll come in handy when we begin to talk about things
like threshold setting, edge detection, peak detection, and other sensor-reading methods.

In planning the range of possible microcontroller responses, the first thing you should do
is to describe the events that you expect to occur over time. Plot out some of the dynamics
that you expect the microcontroller to sense so that you can decide what techniques you’ll
need to use for your sensors to work optimally. Think through the actions to be sensed, and
draw a rough graph of what they should look like. In some cases, this is simple enough that
you can do it in your head, but in any complex system, it’s often useful to have it on paper.

For example, Figure 8.3 is a rough graph of a person walking down a hallway, past several
distance ranging sensors.

Figure 8.3
A person walking
down a hallway, sensor 1 sensor 2 sensor 3
as seen by a
microcontroller.

(0]

[®)]

8

=

Time

If you just wanted to know where the user is, you could look for the sensor with the highest
reading and assume she’s near that sensor; but on which side? Checking the readings of the
sensors on either side would give you a better picture because the one she’s nearer to might
read higher than the one she’s farther from. If you want her direction, you have to keep
track of which sensors have already sensed her presence and which haven’t. To get her
speed, you could time the delay between sensing a peak on sensor one and sensor two. The
possibilities can get very complex, and having a visual model of what you expect to sense
can make it much easier to interpret what you actually sense.
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184  Part Il - Advanced Methods

Speaking

When we listen, whether we'’re listening to humans or non-humans, we bring with us
similar expectations about how the pattern of a conversation will go. We know that pets,
for example, react to our actions in about the same amount of time as people (and in

some cases faster). We expect the same from our devices.? We expect that when we push

a button, flip a switch, wave our hand, shout, or take whatever action is expected, the
device will react with at least conversational immediacy. Let’s take the Clapper, which can
turn on or off a light when it hears a loud sound (such as the clapping of our hands), as

an example. If the Clapper reacts too quickly and the lights come on when our hands first
touch, we are startled. If the Clapper reacts too slowly, and the lights aren’t on by the time
we’re consciously aware of the end of our clap, we prompt the device again, just as we do
in conversation. Think of the number of times you've jiggled the toilet handle, flipped a
light switch off and on in rapid succession, or jabbed repeatedly at a remote control power
button, and you know what we’re talking about.

When you design interactive devices, you have to factor this expectation in, and either
meet it or give the person using it a new set of expectations that the device can meet. Your
device should respond in ways a person expects or can learn to expect. Once you get to
know the pace of response of your devices, you learn to factor that in when you interact
with them. If you know the garage door opener takes a second to start moving, you don’t jab
it again right away. If the fluorescent lights take a few seconds to warm up, you give them
time. We're especially tolerant with computers, because we figure they’re computing, and
we think computing takes time. The truth of the matter is often quite different.

Unlike humans, computers can do only one thing at a time. However, they can do things
much faster than us, so it’s possible for a computer to have completed several tasks—for
example, reading a sensor, interpreting the result, using it to adjust the image onscreen
or the position of a motor, and preparing to read again—all before the human that’s
interacting with it is aware that she’s finished speaking. They’re so fast, in fact, that
multimedia designers often have a tendency to overburden them with complex tasks,
making them seem slower than they really are. If you've ever had a computer react
sluggishly as you attempt to drag a window across the screen, you've seen this in effect.
Each time the computer reads the sensor (the mouse position sensors), it then has to
complete several million tasks: figuring the new position of the window; examining
what’s already drawn there; calculating the effect of fancy things like drop shadows of
the window on the images beneath it; redrawing the cursor, the window, and the screen
beneath the window’s edges; and making a cute dragging sound. One challenge an
interaction designer faces is to determine how much the computer can do before the user
expects a reaction and to provide that reaction in a timely way.

2 In The Media Equation: How People Treat Computers, Television, and New Media like Real People and Places (Cambridge
University Press, 1998), Byron Reeves and Clifford Nass make a very interesting case that people unconsciously treat
computers like